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HIGHLIGHTS

• The main components, principle, and technology of dielectric elastomer actuator (DEA) were reviewed to illustrate that DEA can be 
an effective carrier for mechanobiology research.

• Comparison between DEA-based bioreactors and current commercial devices is provided, as well as the outlook of the DEA bio-
applications in the future.

ABSTRACT As a frontier of biology, mechanobiology plays an important role in 
tissue and biomedical engineering. It is a common sense that mechanical cues under 
extracellular microenvironment affect a lot in regulating the behaviors of cells such as 
proliferation and gene expression, etc. In such an interdisciplinary field, engineering 
methods like the pneumatic and motor-driven devices have been employed for years. 
Nevertheless, such techniques usually rely on complex structures, which cost much 
but not so easy to control. Dielectric elastomer actuators (DEAs) are well known as a 
kind of soft actuation technology, and their research prospect in biomechanical field 
is gradually concerned due to their properties just like large deformation (> 100%) 
and fast response (< 1 ms). In addition, DEAs are usually optically transparent and 
can be fabricated into small volume, which make them easy to cooperate with regular 
microscope to realize real-time dynamic imaging of cells. This paper first reviews 
the basic components, principle, and evaluation of DEAs and then overview some 
corresponding applications of DEAs for cellular mechanobiology research. We also 
provide a comparison between DEA-based bioreactors and current custom-built 
devices and share some opinions about their potential applications in the future according to widely reported results via other methods.
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1 Introduction

Mechanobiology is an emerging science concern about the 
effects of mechanical loadings and physical forces on cell 
behaviors and diseases [1]. Biological cells and tissues liv-
ing in vivo environment are exposed to several mechanical 
stimulations such as stretching and contracting. As reported 
so far, mechanical loadings can be sensed by cells and then 
influence cellular behaviors like migration, proliferation, 
orientation, and gene expression [2–9]. Additionally, some 
diseases such as atherosclerosis [10] and cancers [11] are 
proved to have similar relation with mechanical cues as 
well. For example, Kim et al. [12] found that mechanical 
effects can affect cellular remodeling and regeneration of 
tissue, which means the possibility of developing cell-based 
therapies. Besides, Park et al. [13] confirmed that equiaxial 
and uniaxial strains have different induction effects on the 
differentiation of mesenchymal stem cells. In a word, peo-
ple are now trying to achieve better understand of cellular 
mechanism for the purpose of developing more effective and 
advanced biomedical technology.

However, studying mechanical stimulus in vitro directly 
remains difficult because the traditional cell culture tech-
nology cannot provide such mechanics, so the first prob-
lem need to solve is to apply mechanical stimulations to 
cells while cultured in vitro to mimic the true environment 
in vivo. As reported so far, some methods have been taken 
to apply mechanical loadings on cells, including hydrostatic 
pressure and fluid shear [14–16], other interesting devices 
such as biochip [17], wrinkled skin-on-a-chip [18], pneu-
matic stretching system [19], motor-driven system [20], pie-
zoelectric [21], and optical actuation methods [22, 23]. More 
recently, a custom-built open-source stretch system assem-
bled from laser-cut acrylic plates emerged [24]. In general, 
such a gap between engineering and biology is attractive and 
even profitable; some companies have entered this market 
and are selling their products, which include Flexcell system 
[25, 26] from Bio-Equip, STB-1400 [27] from Strex, etc. 
Generally, these means require complex designs and result 
in complicated system structures and besides high costs. In 
contrast, dielectric elastomer actuators (DEAs) are simpler, 
have advantages of highly controllable deformation, sub-
millisecond response time, and optically transparent, and 
can be integrated with cell culture environment conveniently. 
Since Pelrine et al. [28] presented their landmark discovery 

about electrostatically activated elastomeric actuators in 
2000, this novel technology has been used in many fields, 
such as energy harvesters [29], tactile displays [30], soft 
robotics [31, 32] and what to be emphasized here, mechani-
cally biological cells stimulus, and the potential application 
as the biosensor to measure the cellular contraction force.

In this review, firstly we introduce the basic dielectric 
elastomer actuator technology simply, including the com-
ponents and actuation mechanism of the DEA devices, and 
the characterization methods. Secondly, we overview the 
applications of DEA-based devices in the field of cellular 
mechanical loading, which can be divided into bio-stretching 
device and biosensor. Thirdly, comparisons of popular com-
mercial methods and DEA-based devices are made. Lastly, 
we further provide our prospect on DEAs’ applications in 
the future mechanobiology research.

2  Components of the DEA Devices

DEAs are typically simple in structure and require very 
different materials with traditional actuators like electric 
motors. Briefly, the dielectric elastomer membrane (DEM) 
and the compliant electrodes are what demanded, the pre-
stretched DEM sandwiched by electrodes [32, 33] and then 
fixed by rigid frames. These two main components are the 
key to determine the performance of DEA-based devices and 
combine with various pre-stretch sets to make DEA forms 
diversify.

2.1  Dielectric Elastomer Membrane

The DEM belongs to one subcategory of electroactive 
polymers (EAPs), which can respond to electrical stimula-
tion with significant size or shape change, and has already 
emerged as a new actuation material [34]. As one of the 
most important components of DEAs, the material proper-
ties of DEM directly determine the actuation performance 
of DEAs. Since the 1990s, researchers have conducted mas-
sive experiments to find proper DEM materials, such as sili-
cones, polyurethanes, acrylics, and nitrile rubbers. Among 
these, silicones and acrylics are the two most commonly 
used materials. The most widely used acrylic DEM is 3 M 
VHB 4910 and 3 M VHB 4905 [35]. Both of them are made 
of a mixture of aliphatic acrylate, which shows a property of 
high viscosity, flexibility, and tensile resistance. However, 
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the VHB-based DEAs show serious viscoelastic nonlinearity 
that makes the precision tracking control challenge [36–41].

Silicone rubber, which has good elastic properties, has fast 
strain response speed, and can maintain constant modulus at 
higher temperature, is one of the commonly used matrices for 
the preparation of DEM materials although the deformation 
degree of silicone membrane is low. Because of its weak vis-
coelastic characteristics, the response speed of silicone film 
is faster and shows higher efficiency. Besides, Akbari et al. 
[42] have presented theoretical guidelines for improving the 
deformation actuation of silicon-based DEM by changing the 
pre-stretch ratios.

Actually, DEA devices used for biomedical and bioinspired 
systems have already been reported [43], such as refreshable 
braille displays for the blinds and bioinspired tunable lenses 
for the visually impaired. However, as reported by Herbert 
Shea and colleagues, for cell- and tissue-related applications, 
the DEM materials to be chosen should satisfy some special 
requirements [44]: Firstly, they should be non-cytotoxic and 
compatible with standard cell culture protocols like steri-
lization and incubation; secondly, they need to be optically 
transparent for the convenience of integrating with the optical 
microscopes. After that, the selection of DEMs can be flex-
ible since various designs and fabrications may be chosen. 
For example, some works used Sylgard 186 (Dow Corning) 
as the DEM and covered it with Silbione LSR 4305 (BlueStar 
Silicones) as the biocompatible membrane, which contacts the 
biological samples directly [44, 45]. Besides, as the alterna-
tive, other PDMS has been used as well [46–48]. In our group, 
ELASTOSIL Film 2030 250/100 from WACKER was used to 
meet the principles above.

2.2  Materials and Techniques for Electrodes

Another indispensable element for DEAs is the compliant 
electrode; well-designed electrodes patterning can bring the 
charges to the target shape and area and therefore form the 
desired deformation. As commonly accepted, the electrode 
materials should have some properties: (1) They have the 
ability to maintain conductivity during large strains; (2) their 
stiffness can be ignorable, comparing with that of DEM; 
(3) they have the ability to maintain good stability [49]; (4) 
they are preferably to be patternable for conducting flexible 
electrode designs [50]. For applications on cells and tissues, 
as reported by Samuel Rosset et al. [51], manufacturability, 

miniaturization, impact on DEA performance, and the compat-
ibility with low-voltage operation need to be taken into consid-
eration. In this section, some widely used electrode materials 
are introduced.

2.2.1  Carbon‑Based Electrodes

Because of the low stiffness and ability to maintain conduc-
tive at large strain [50–52], carbon-based electrodes are the 
most popular electrode materials for DEAs; typically, they 
can be divided into three main categories: carbon powder, 
carbon grease, and conductive rubber.

Carbon Powder Electrodes The main outstanding merit 
of powder-based electrodes is their less contributory to the 
stiffness of the DEM. Applying the loose carbon powders 
directly on the membrane became the solid choice in the 
early stage. However, the disadvantages of carbon powder 
are obvious: It is difficult to maintain conductivity at large 
strain [53, 54] and lifetime is also limited because of the 
detaching of conductive particles from electrodes [51].

Conductive Rubber Electrodes Similar but not identical 
to carbon grease, conductive rubbers are produced through 
directly mixing conductive particles with silicone. As a 
result, the ablation or migration of the conductive particles 
can be avoided, and the lifetime of the electrodes can be 
extended. However, the impact on the stiffness of the DEM 
is not negligible [51].

With less requirements on precision, thickness homogene-
ity, and shape of the electrodes, they can be easily painted 
on the DEM. Nevertheless, for cellular research, the DEAs 
usually command accurate electrode pattern. Here, we intro-
duce several techniques to precisely fabricate the carbon 
electrodes on the DEM as shown in Fig. 1.

Clearly, a mask covered on the surface of the membrane 
can be helpful to paint the carbon material into desired 
shape. Pelrine et al. [54] have presented their work for fab-
ricating loose carbon grease and powder-based electrodes. 
To improve the uniformity, Schlaak et al. [55] proposed the 
use of spray coating as presented in Fig. 1a, which is an effi-
cient manufacture method and can be used for commercial 
applications. Similarly, the electrodes can be stamped on the 
DEM [56]. In such case, fabricate a soft stamp into desired 
pattern by replication on an etched silicon negative master 
as shown in Fig. 1b. Besides, printing techniques can also 
be used to pattern electrodes as presented in Fig. 1c since 
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the carbon-based materials can be made into conductive ink 
[51]. As reported by Krebs, printing methods have been uti-
lized to manufacture flexible devices [57]. More advanced, 
high-resolution and robust compliant electrodes for silicon-
based soft actuators and sensors are completed through laser 
ablation technology [58] (Fig. 1d).

2.2.2  Metallic Electrodes

Due to the low resistance, metallic electrodes are also alter-
native for the field of DEAs. However, the high Young’s 
modulus and relative small strain make it difficult to directly 
pattern them. To overcome this drawback, some fabrication 
methods have been proposed, such as photolithography, 
depositing [51], and implantation. Among these methods, 
DEAs with implanted metallic electrodes present better 
performance. Here, we introduce two methods to implant 
metallic electrodes: filtered cathodic vacuum arc implanta-
tion (FCVA) and supersonic cluster beam (SCB) implanta-
tion. The principle of FCVA can be depicted simply [59–62]: 
The plasma generated from the source consists of metal ions, 

electrons, and the undesirable macroparticles, and the mag-
netic filter is used to remove the macroparticles from the 
plasma; nanometer-sized clusters can be generated through 
this technology (Fig. 2a). Similarly, the progress of SCB is 
shown in Fig. 2b: Vaporize the metal firstly and then use 
a pulse of inert gas to quench the plasma to form the neu-
trally charged clusters. Then, the clusters can be injected 
into the deposition chamber and form metal/PDMS nano-
composite layer. Figure 2c, d shows the nanostructure of the 
metallic electrodes that are produced via FCVA and SCB, 
respectively.

2.2.3  Transparent Electrodes

Basically, the conductive materials which meet the require-
ments of DEA electrodes application are non-transparent. 
However, some works proposed several transparent elec-
trodes that can be potentially used in optical applications. 
As reported, Hu et al. [64] have studied transparent and 
conductive nanotube thin films on electrical and optical 
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Fig. 1  The techniques for creating carbon-based compliant electrodes. a Shadow masking: using a shadow mask to selectively spray the carbon 
material on target area and then removing the mask to get the final electrodes. b Stamping process: using patterned elastomeric stamp to pick up 
the carbon material and stamping it on the DEM. Redrawn from Ref. [56] with permission. c Printing: the carbon-based materials can be made 
into conductive ink; then using printing technology to pattern electrodes. Adapted from Ref. [51] with permission. d Laser ablation: the thick 
PDMS–carbon composite layers can be patterned by laser ablation and bonded to PDMS membrane by oxygen plasma activation. Adapted from 
Ref. [58] with permission
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properties. Kovacs et al. [65] found that loose carbon black 
with extremely thin thickness can be partly transparent when 
applied on adhesive acrylic membrane. Implanted palladium 
and gold electrodes have also been reported to be possibly 
present transparency with a ratio of 35 and 70%, and the 
value is dependent on the metal and the implanted dose [62]. 
Besides, ionic hydrogel is a novel, ordinarily, and transparent 
material for electrodes of DEAs [66, 67]. Combining ionic 
hydrogel with 3D printing, people successfully fabricated 
electric-driven soft actuators that can achieve a maximum 
vertical displacement of 9.78 ± 2.52 mm at 5.44 kV [68].

As mentioned above, DEAs for cellular research need 
to be optically transparent. Therefore, the development 
of transparent electrodes can accelerate the applications 
of DEAs of cellular use; before that, much work is still 
demanded to develop such novel electrodes materials and 
techniques.

3  Actuation Mechanism of DEAs

In general, DEA is a device that converts electrical energy 
into mechanical deformation [28]. The basic actuation 
mechanism is presented in Fig. 3, a dielectric elastomer film 
is sandwiched by the patterned electrodes on both top and 
bottom sides, and high-voltage (HV)-induced compression 
along thick direction causes in-plane expansion. This physi-
cal response of dielectric elastomers can be linked with their 
Maxwell stress effect [49]. Since the electrode patterns can 
be various, the specific strain characterization of DEAs can 
be different in the concrete cases. Typically, the strain along 
the thickness direction SM [69] and the effective electrome-
chanical pressure P [70] of the elastomer membrane can be 
used to describe the strain level.

where �0 is the permittivity of vacuum, �
r
 is the dielectric 

constant of the elastomer, E is the electric field applied, and 
s is the elastic compliance.

(1)SM = −s�0�rE
2∕2

(2)P = �0�rE
2
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Fig. 2  a The schematic picture of FCVA. Adapted from Ref. [59] with permission. A high-voltage (600 V) impulsion initiates the main arc 
from the cathode, the filter helps to trap the macroparticles and the negatively substrate holder accelerates the positive ions through the plasma 
sheath. b The schematic of SCB progress. Adapted from Ref. [63] with permission. The Au NPs nanoparticles generated from the cluster source 
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permission. d TEM image of the product of SCB. Adapted form Ref. [63] with permission
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Generally, for the DEA-based devices, it is notewor-
thy that the pre-stretch of DEM is another indispensable 
design parameter that can affect the performance. Obvi-
ously, pre-stretching can prevent the buckling of the die-
lectric elastomer when electrically activated. Secondly, 

pre-stretching the elastomer contributes to improve the 
performance of DEAs since it can increase electrome-
chanical instability (EMI) of the membrane [28, 72–75]. 
Additionally, equiaxial and uniaxial pre-stretch can help to 
generate equiaxial and uniaxial strain, respectively. There-
fore, it is common to change the amplitude and ratio of 
pre-stretch to generate desired behaviors of DEAs.

Figure 3c, d shows the classical configuration of DEAs 
for cell mechanical stimulus [71]. Usually, the rigid frame 
is necessary to hold pre-stretch of the DEM. Once the volt-
age is applied, the area with electrodes is expanded, while 
the remaining area is compressed. As a result, the expanded 
area is defined as active and can be used for stretching the 
cells and the compressed area is called passive and can be 
adopted to compress the cells.

4  Evaluation of DEAs

It is important to understand cellular environment when 
studying cells’ responses to the mechanical loadings, so 
precisely characterization of DEA devices is indispensa-
ble, that is, we need to gain the strain distribution of our 
target area in the DEA. Currently, finite element modeling 
(FEM) and image processing (machine vision and digital 
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image correlation) techniques are widely used to calculate 
the strain distribution.

FEM is a non-contact way commonly used in many fields 
to calculate stress and strain distribution of a mechanical/
structural system [76]. To complete the FEM, some basic 
parameters of the materials are required such as Poisson’s 
ratio and elastic modulus. Constrain the model with certain 
boundary conditions and divide it through multiple grids, 
calculate the strain in every single grid, and finally gener-
ate the whole strain distribution. For example, Akbari et al. 
[47] optimize the geometric configuration of the actuator by 
using a simplified FEM.

Image processing technology can be helpful as well and 
seems more popular among the people who study cells via 
DEAs. Similar to FEM, digital image correlation (DIC) is 
another non-contact method to obtain the strain distribu-
tion. Set the region of interest (ROI) on the original image; 
the algorithm conducts correlation calculation in the image 
after deformation to find the most relevant points/pixel with 
the original one, and then, displacement and strain can 
be calculated. Recently, Blaber et al. [77] published their 
open-source 2D digital image correlation software. With this 
software, the strain distribution of the actuator can be suc-
cessfully measured by processing the pictures in actuated 
and rest state. For instance, as shown in Fig. 4, Poulin et al. 
[78] obtained the strain distribution at the ROI from both 
compressive and tensile modes through DIC. Analogously, 
it is easy to complete the characterization when the shapes 
of electrodes changed [45].

Besides the strain distribution, the basic deforma-
tion–voltage responses (average strain) can be obtained 
through image processing as well. As reported by Rosset 
et al., they measured the strain of actuator using machine 
vision via a LabVIEW image processing to track the four 
corners of the electrodes [79]. After calibration, the coordi-
nates of these four corners that are under both actuated and 
non-actuated states are recorded, so that the curve of voltage 
induced strain can be plotted.

5  DEA‑Based Devices for Cellular Research

According to the different cell amounts that the DEA-based 
bioreactors may apply in, they can be divided into two cat-
egories: one for single cell and the other for a small popula-
tion of cells or in other word tissue engineering.

5.1  DEA‑Based Bio‑Stretcher/Reactor for Single Cell

For single-cell mechanical stimulation, technologies like 
microfluidics [80], atomic force microscope [81], micro-
electromechanical systems [82], and optical tweezers [83] 
have been widely used. The DEA-based devices for single-
cell mechanical loading rely on the principle that cells may 
deform with the stretchable substrate where they already 
adhere. Now, such devices are at the stage of conceptual 
design. Figure 5 shows the schematic of DEA designed 
for stimulating single cell. Implanted gold ion electrodes 
are patterned on both sides of PDMS film [47]. Continu-
ous electrodes are implanted on the top side of membrane, 
while the bottom side has narrow implanted electrodes. Red 
lines are ion-implanted electrodes on the bottom of a PDMS 
membrane and horizontal lines are trenches with square 
cross section. Mechanical stretch happens in the intersec-
tion regions of the top and bottom electrodes. Such design 
forms numerous units, and Fig. 5c actually shows four units 
for four cells to be stretched [46]. When the DEA is actuated 
by a voltage of 3.8 kV, the membrane expands by 56% along 
the x-axis (Fig. 5d).

5.2  DEA‑Based Bioreactor for Small Population 
of Cells

For a small group of living cells, it is more flexible to 
generate tensile or compression strains through DEAs, and 
the corresponding research is shown in Fig. 6. In 2014, 
Alexandre et al. [71] reported that the stress in passive 
region of DEAs can be utilized to compress the cells. 
Since then, in 2016, they developed the DEA-based cell 
stretcher to stimulate lymphatic endothelial cells (LECs) 
and demonstrated that DEAs can be interfaced with living 
cells and used to supply mechanical loading [44]. After 
that, an innovative muscle-like bioreactor (mimicking 
the small intestinal) for the investigation of physiological 
phenomena was described by Cei et al. [70]. The bioreac-
tor can maintain its performance even if incubated with 
Caco-2 cells for 21 days until the differentiation of cells 
can be observed. In 2018, the actuator that can generate 
alternately tensile and compression strains was proposed 
by Poulin et  al. [78]. Afterward, as the newest work, 
for the purpose of investigating drastic cases like rapid 
stretch effect on cardiac tissue, Imboden et al. [85] showed 
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their high-speed mechano-active multielectrode actuator, 
which can provide stimulus of mechanoelectrical coupling 
mechanism.

Such a progress actually indicates the diversified future 
of the DEA-based bioreactor. DEAs can be applicable for 
different purposes and further fabricated into the bioreac-
tor with a specific function.

5.3  DEAs Designed for the Measurement of Traction 
Force of Cells

Monitoring the biological indicators of cells, e.g., meta-
bolic analysis, biomarker detection, cell force, and strain, 
is very necessary for investigating the cells’ behaviors and 
understanding some diseases. The metabolic analysis and 
biomarker detection mainly rely on mass spectrometry 
and electrochemistry ways [86–88], while force sensing 
technologies predominantly rely on optical methods [89], 
which hinders scaling up of devices for the purpose of 
parallelized and real-time measurements. Except for the 
function of passing mechanical loading to the living cells, 
as reported, the DEAs can also be the potential sensors 

to measure traction force of cells. For example, in 2017, 
Rosset et al. [90] used the DEAs to achieve subcellular 
resolution measurement of cell traction forces. A DEA-
based sensor system for measuring the contraction force of 
smooth muscle cells was also reported [91], and the prin-
ciple is shown in Fig. 7a: The system contains three main 
parts, including the DEA-based cell culture support (24-
well unit is designed for high-throughput parallel measure-
ment), the read-out electronics and the computer to show 
the measured data. Actually, every culture well works 
independently to sense the expansion which is caused by 
cellular contraction and the changes in the device capaci-
tance which is caused by the contraction. Cell contraction 
causes changes in the geometry, i.e., diameter of the cell 
region and thickness of the DEM from d to d′ and t to t′, 
respectively. These changes consequently cause changes 
in the device capacitance that can be measured.

In 2016, the same group proposed further optimization of 
thin-film sensors for contractility measurement of muscle cells 
[92]. In this work, they proposed their modeling to predict 
sensor behavior as shown in Fig. 7b. They describe the sys-
tem based on cylindrical coordinates which use R and θ to 
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model the in-plane information and Z to present the thickness 
information. The final capacitance after cell contraction can 
be expressed as Eq. 3:

where R is the radial position of an arbitrary point in the 
sensing region before pre-stretch and cell contraction, t is the 
initial sensing layer thickness before pre-stretch, and �0 and 
�
r
 are the permittivity of free space and the relative permit-

tivity of the sensing layer, respectively. A is the radius of cell 
region before pre-stretch, B is the radius of the DEM before 
pre-stretch, and λZ is the stretch in the thickness direction 
(assuming material incompressibility).

6  Comparison Between Usual Commercial 
Bioreactors and the DEA‑Based Ones

In this part, we provide comparison between the widely used 
commercial devices and the DEA-based ones. The tradi-
tional mechanical systems can be typically divided into two 
categories, the motor driven (STB series from STREX) and 

(3)C
�� = �0�r ∫

B

A

2�RdR

t�
2
Z
(R)

the pneumatic (FX series from Flexcell). Generally, almost 
all of the mechanical methods to stimulate cells in vitro rely 
on a membrane (usually PDMS or silicone that are biocom-
patible) to deliver the stimulus. For the pneumatic devices, 
the membrane is placed on the holder, a loading post is filled 
to form the air chamber, and a channel is made to allow 
the operation of pumping (Fig. 8a). Once we pump air out 
from the chamber, the atmospheric pressure will squeeze 
the membrane into the chamber and consequently create a 
tensile strain. In contrast, motor-based system is more direct. 
The membrane (or chamber) is installed on two holders. One 
is fixed, while the other is movable and is connected with the 
motor through driven components. When activate signal is 
applied, the motor can generate corresponding rotation; the 
driven components then translate the rotation to traction of 
the movable holder for stretching the membrane (Fig. 8b). 
For the DEA-based bio-stretcher, uniaxial pre-stretch of 
DEM usually is set to produce the strain along one desired 
direction. Biocompatible membrane in which cell is cultured 
firstly is placed on the DEA after electrodes patterning, 
and then rigid frames are used to fix the membranes. The 
compliant electrodes will expand along the reverse direc-
tion of pre-stretch; once HV is applied, then cells can be 
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stretched (Fig. 8c). Usually, the volume of the pneumatic 
and motor-driven devices is higher than that of the DEAs, 
because of the extra elements such as air chambers and 
movable holders. Besides, the pneumatic and motor-driven 
methods require the pump and motor to activate the mem-
brane; in other words, these are indirectly control system, 
facing problems that strain can be limited since the original 
activated signal which need to be converted may beyond the 
performance of the pump or motor. In contrast, DEA-based 
devices are motivated directly by the electric signal, which 
is another unique advantage.

When it comes to specific using, several parameters may 
be important to assess the devices, including available fre-
quency and strain. Here, we obtain the information of sev-
eral well-known commercial motor-driven and pneumatic 
systems by searching their manual on the Web site [93, 94] 
and list them in Table 1. The performance of the pneumatic 
highly depends on the membrane and the vacuum pump, 
while for motor-driven devices, the key element is the motor 
itself. As mentioned above, DEAs are directly activated via 
electric signal without the progress of conversion from con-
trol signal to motor driver or vacuum pump that can restrain 
the performance, i.e., the faster response time and higher 
frequency may be obtained. Thus, DEA-based devices can 
theoretically provide more various loadings than the other 
two ways. In addition, due to the compact volume and highly 
flexible design of DEAs, real-time monitoring of cells via 

microscope is feasible and relatively simple. For instance, 
Poulin et al. [44] presented the DEA-based real-time moni-
tor cellular stimulating system (Fig. 9a). The cell-seeded 
DEA device is placed in a simplified transparent incubator 
over the microscope objective, and the microscope is pro-
grammed to periodically capture the cell picture. In addi-
tion, for clear observation of cellular internal elements like 
nucleus under mechanical stimulus, staining is also compat-
ible in such system. They stained the human lung carcinoma 
cells A549 and recorded the dynamic position of cellular 
DNA and mitochondria during uniaxial stretch. The nuclei 
displacements they measured show a linear relation with the 
initial nuclei positions, which can be the evidence that DEA-
induced strain is transferred to the cells [78]. 

In a word, DEAs can be a greater available carrier choice 
for cellular mechanical loading research. Therefore, we give 
a brief outlook of DEAs’ applications (next section) and 
hope to enlighten the combination of mechanobiology and 
DEAs.

7  Outlook of DEAs in Cellular Mechanical 
Loading Research

A phenomenon of cellular and tissue behavior adjustment is 
strongly associated with the changes in extracellular matrix 
(ECM) and protein expression, which can be determined by 
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the loading and cell type. For in vitro cellular stimulus, we 
can deform the cell membrane by stretching the cell adhe-
sion substrate [95, 96]. Over the past years, people have con-
ducted interesting researches on the load-sensitive cells, try-
ing to discover the relations between cellular responses and 
different loading conditions. Although most of the published 
results were completed by the pneumatic and motor-driven 
devices, comparison suggests that DEA-based devices share 
the properties as well or even better, so the following appli-
cations can theoretically be the references for development 
of DEA-based bioreactors.

Among the various cellular responses, reorientation of 
the cells is intuitively visible, and the relevant research has 
been carried out for a long time. In 1986, Dartsh et al. [97, 
98] presented their work to cyclic stretch smooth muscle 
cells, and the result shows uniform reorientation of the 
uniaxial stretch cells compared to the control group. Then, 
experimental results suggest that cells form weak adhesions 
on the soft substrates [99], which allow the reorientation 
under in vitro mechanical loading. Based on these results, 
people tempted to model this phenomenon. They proposed 
that mechanical sensor system of cells is the reason why 
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Table 1  Performance parameters of different technologies and models

STB, the motor-driven device provided by STREX; FX, the pneumatic device provided by Flexcell

Technology Model Strain Frequency Signal wave Microscope used

Motor-driven [93] STB-1400-04 Uniaxial stretch 2, 4, 5, 8, 
10, 12, 15, 20%

1/60, 1/30, 1/10, 1/6, 1/3, 
1/2, 1 Hz

64 patterns –

STB-1400-10 Uniaxial stretch 2, 4, 5, 8, 
10, 12, 15, 20%

1/60, 1/30, 1/10, 1/6, 1/3, 
1/2, 1 Hz

64 patterns –

STB-150 Uniaxial stretch 2, 4, 6, 8, 
10, 12, 15, 20%

1/60, 1/10, 1/3, 1 Hz 64 patterns Nikon and Olympus

STB-150w Uniaxial stretch (2 switch-
able modes)

1/6, 1/3, 1/2, 1 Hz 64 patterns Nikon and Olympus

STB-190-XY Biaxial stretch and com-
pression, ~ 30%

0.05, 0.2, 0.5 Hz 64 patterns Nikon and Olympus

Pneumatic [94] FX-5000 Stretch, ~ 30% 0.01–5 Hz Sinusoidal, etc.; custom 
definable

Upright microscope

FX-6000 Compression 0.01–5 Hz Sinusoidal, etc.; custom 
definable

Upright microscope

DEA-based [78, 85] Uniaxial stretch ~ 38% 
compression ~ 12%

> 10 Hz, customer defin-
able

Customer definable Inverted microscope
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cells response to the loadings; they mainly focus on the 
state dynamics of cells during reorientation such as focal 
adhesions (FAs), stress fibers (SFs), and actin cytoskeleton. 
Some representative theories were raised. For example, a 
widespread theory once proposed that cells realign along the 
zero (or minimal) strain direction to maintain original undis-
turbed state [100], and the theory can be expressed as Eq. 4:

where �xx and �yy refer to the strain along x and y direc-
tions, respectively. However, Livne et al. [8] found deviation 
between the experimental cellular reorientation and theo-
retical predictions above and proposed the new theory that 
regards the reorientation as result of dissipative process to 
relax the passively stored elastic energy, and can be pre-
dicted as Eqs. 5 and 6:

(4)� = arctan

(√
−
�xx

�yy

)

(5)

� = arccos

��
b +

1 − 2b

r + 1

�
= arctan

⎛⎜⎜⎝

�
r + b ⋅ (1 − r)

1 − b ⋅ (1 − r)

⎞⎟⎟⎠

This function is valid for r ∈ [1 − 1/b, 1 + 1/(b − 1)], where 
b is a dimensionless parameter which is related to cellu-
lar Young’s moduli along the polarized reference system 
(Fig. 10). For verification, they tracked cells under various 
original angles and stretch parameters and obtain well fit 
between the experimental results and the predicts. More 
recently, Chagnon-Lessard et al. [101] demonstrated that 
strain gradients guide the orientation as well. The mecha-
nism was described as gradient avoidance response, and the 
statistic results show great similarity of cellular arrangement 
between high-strain region and the low-strain but high-gra-
dient area.

Besides, some basic functions of cells, such as endocyto-
sis and exocytosis, are associated with the membrane ten-
sion. In fact, the decrease in tension improves endocytosis, 
while an increase in tension brings suppression [102, 103], 
and works have been conducted to research such endocyto-
sis modulating through mechanical stimulus. For example, 
Boulant et al. [104] used a mechanical stretching device 
(motor-driven) to stretch the cell substrate to verify the 
adjuvant effect of actin- on clathrin-mediated endocytosis. 
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They found that jasplakinolide treatment of the stretched 
cells causes a dramatic increase in pit lifetimes and percent-
age of arrested pits under 25% stretching, which shows that 
the clathrin-mediated endocytosis must be assisted by actin 
in order to complete the vesicle dissociation process under 
high membrane tension. Thottacherry et al. [105] applied 
6% stretch strain to the Chinese hamster ovary (CHO) cell 
and observed a remarkable reduction in fluorescent dextran 
(F-Dex) endocytosis compared to the static. However, F-Dex 
uptake increases significantly at the movement of stretch 
relax (Fig. 11b); they thus proposed the CLIC/GEEC(CG), 
a dynamin-independent pathway that can react to the change 
in membrane tension and regulate F-Dex uptake.

For broader fields to discuss, tumor research and reha-
bilitation engineering may be appropriate [106–108]. 
Uncontrolled proliferation of tumor causes forces interac-
tion to the ECM and tissues nearby, which can be usually 
classified into shear, compress, and stretching stresses 
[106]. Hofmann et al. [109] found that mechanical stretch-
ing increases the proliferation of cancer cells, while Helm-
linger et al. [110] found that compressive stress inhibits 
the growth of tumor spheroids. Besides, cells and tissues 
in human’s joint undergo complex forces during our daily 

life, which means that rehabilitation research from ath-
letic injury can be inspired from mechanical stimulus as 
well. As reported, the state of tendon and meniscus can be 
associated with mechanical loadings. 10%-strain dynamic 
compression promotes anabolic of meniscus, while strain 
at 20% regulates the state into catabolism [111], and the 
responses can be frequency and time dependent. More 
interestingly, cyclic tension strains show inhibition of 
inflammatory of meniscal cells [107]. In addition, experi-
mental results demonstrated that tendons also respond 
to mechanical loads, appropriate loads enhance tendons, 
while chronic mechanical loading may accelerate tendi-
nopathy [112, 113].

In this section, we simply introduce several potential 
applications of DEA-based devices for mechanobiology 
research, including cellular reorientation, endocytosis, etc. 
Actually, much more concrete scenarios of this field are 
still waiting to be explored. Similar to the motor-driven 
devices, DEAs are at the junction of medical (biology) 
and engineering science; they can be designed into various 
mechanical loading bioreactors while maintaining cell and 
tissue affinity. As a promising tool, we hope that DEAs can 
contribute to the development of mechanobiology.
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Fig. 10  Reorientation of the cells. a Cells (REF-52 fibroblast) with random orientations before stretching. b Reorientation after stretching. c 
The description of strain reference on a polarized cell. Adapted from Ref. [8] with permission
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8  Conclusions

Exploring the response of cells is an exciting, evolving 
but challenging task which is significant for biomedicine 
engineering. Directly, many illnesses can be linked with 
the disordered cells and tissues functions, which means 
that it makes sense to research cellular responses under 
various mechanical loadings for better understanding of 
some diseases or even cancers. Furthermore, if we can 
regulate cells and tissues into the proper states or functions 
through mechanical stimulus, some effective and promis-
ing treatments can be developed.

In this work, we firstly provide simple introduce of 
DEAs, including components, actuation principle, evalua-
tion methods, and several applications on cellular mechan-
ical loading. Then, we compare the DEA-based bioreactors 
with current widely used custom-built bioreactors, show-
ing their connections and differences, and some promi-
nent properties of DEAs stand out. At last, we give short 
outlook of DEA technology in the future mechanobiology 
research.

In a word, although much corresponding examples are 
still lack, employing DEAs as the bioreactors and biosen-
sors for cellular applications is actually opening the door of 
cellular mechanobiology through a novel method. As the 
new generation of actuators, DEAs bring some irreplace-
able advantages compared to traditionally used peers like 
the motor-driven and pneumatic: They have simpler struc-
ture, faster response, and higher controllability. In addition, 
DEAs are more flexible to design and can be easily catered 
the request of biocompatible and combine with microscope 
to form an experimental system. Among these advantages, 
the property of rapid response makes the DEA-based devices 
potential to simulate some extreme conditions, such as sud-
den cardiac death, which is absolutely difficult to realize by 
some other bioreactors. Furthermore, continuous advances 
in material science and microfabrication technology make it 
feasible and promising to study cellular response of mechan-
ical stimulus through DEA devices since they can be manu-
factured into micro–nanoscale, and then design into high-
throughput devices that are meaningful for cellular research. 
What is more, because the using of powerful algorithm and 
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image processing tools, this field can be multidisciplinary 
and a hot issue in the future, which means low threshold for 
the people to conduct this study.

Nevertheless, some challenges still remain elusive. 
Firstly, the drive voltage for DEAs is usually too high 
(several thousand volts), which makes this technique risky 
and limit their broad applications. Therefore, much works 
are still need to cut down the required voltage or electric 
field. As reported, for example, Shea’s group have tried to 
reduce the voltage by decreasing the thickness of DEM 
[114]. Secondly, optimization of DEAs’ basic performance 
can be crucial, including larger strain, higher energy den-
sity, longer lifetime (cycles that can be tolerated, longer 
shelf time), and better stability, and all of these are impor-
tant to determine DEAs’ further applications in both cell 
and tissues’ mechanobiology and other possible fields.
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