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Abstract
In this paper, a comprehensive modeling approach for a giant magnetostrictive material
actuator (GMMA) is proposed based on the description of nonlinear electromagnetic behavior,
the magnetostrictive effect and frequency response of the mechanical dynamics. It maps the
relationships between current and magnetic flux at the electromagnetic part to force and
displacement at the mechanical part in a lumped parameter form. Towards this modeling
approach, the nonlinear hysteresis effect of the GMMA appearing only in the electrical part is
separated from the linear dynamic plant in the mechanical part. Thus, a two-module dynamic
model is developed to completely characterize the hysteresis nonlinearity and the dynamic
behaviors of the GMMA. The first module is a static hysteresis model to describe the
hysteresis nonlinearity, and the cascaded second module is a linear dynamic plant to represent
the dynamic behavior. To validate the proposed dynamic model, an experimental platform is
established. Then, the linear dynamic part and the nonlinear hysteresis part of the proposed
model are identified in sequence. For the linear part, an approach based on axiomatic design
theory is adopted. For the nonlinear part, a Prandtl–Ishlinskii model is introduced to describe
the hysteresis nonlinearity and a constrained quadratic optimization method is utilized to
identify its coefficients. Finally, experimental tests are conducted to demonstrate the
effectiveness of the proposed dynamic model and the corresponding identification method.

(Some figures may appear in colour only in the online journal)

1. Introduction

Smart material actuated nanopositioning stages are becoming
popular in a wide range of precision equipment with
nanometer or sub-nanometer displacement resolution [1]. In
this equipment, piezoelectric ceramic actuators are widely
applied to realize the actuation due to their advantages of large
output force, fast response time and easy electrical control [2].
However, there is an increasing demand for more force and
larger strain with other smart material based actuators [3–5].
Among the possible options, a giant magnetostrictive material

actuator (GMMA) is the best choice. In technical terms,
Terfenol-D is the most famous commercially available giant
magnetostrictive material (GMM), which is a rare earth–iron
alloy of terbium, dysprosium, and iron metals. In comparison
to other GMMs, the Terfenol-D based GMMA offers the
largest room-temperature magnetostriction [6, 7].

The GMMA works on the principle of magnetostriction,
which is a physical coupling phenomenon between magnetic
properties and mechanical properties [6, 7]. In other words,
strains are generated by an applied magnetic field, which is
known as the Joule effect; conversely, mechanical stresses
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Figure 1. Hysteresis loops of a GMMA containing the bias permanent magnetic. (a) Different input amplitudes. (b) Different input
frequencies.

imposed on the GMM can produce measurable changes in
magnetization, known as the Villari effect [8]. According to
these two famous effects, both actuation and sensing functions
can be achieved by the GMM. In this paper, we focus on the
Joule effect for the purpose of actuation.

Similar to other smart materials based actuators
(i.e. piezoelectric ceramic actuators and shape memory alloy
actuators), GMMAs exhibit a strong intrinsic non-smooth
hysteresis nonlinearity with both amplitude-dependent and
frequency-dependent behaviors, as shown in figure 1.
Hysteresis usually degrades the system performance in such
a manner as to give rise to undesirable inaccuracy or
oscillations, even leading to instability [9]. In order to remedy
the hysteresis, the first step is to develop an available model
for the accurate description of the hysteresis. On the basis
of the principles of physics, the Jiles–Atherton model [10]
was developed to describe the hysteresis behavior using the
domain wall theory and extensive works have since been
developed in [11–13]. Alternatively, without considering the
physical insight into the problem, the Preisach model [14–18]
was used to describe the hysteresis nonlinearity using the
elementary hysteresis operator with a simple mathematical
structure. Although the Preisach model is efficient for
hysteresis modeling of GMMAs, it is quite a challenge to
construct its analytical inverse and to develop a real-time
controller because of the great computational costs for
calculation and identification. As a subclass of the Preisach
model, the Prandtl–Ishlinskii (PI) model is defined in terms
of the superposition of elementary play operators or stop
operators with a density function. The PI model is effective
in describing the hysteresis nonlinearity by a single threshold
variable [19]. The main advantages of the PI model over
the Preisach model are the reduced modeling complexity and
the analytical inverse for the PI model, thus making it more
efficient for real-time applications [20, 21]. The reader may
refer to [3] for a recent review of the hysteresis models for
GMMAs.

Through the above literature review, many efforts
have been made towards modeling the GMMAs. However,
the previous attention was mainly focused on the static
input–output hysteresis nonlinearity without considering the

dynamic behaviors of GMMAs. Even if a phenomenological
Preisach model and a linear dynamic model were combined
in [15, 16] to describe the dynamic behaviors of the
GMMAs, the physical insight of the magnetostrictive
actuators was not taken into account. Recently, based on the
Jiles–Atherton model, some coupled magneto-elastic models
have been presented [22–24], in which the magnetic and
magnetostrictive hysteresis was modeled with no current. In
addition, the analysis was limited to magnetostrictive rods,
without considering the entire actuator structure. However,
GMMAs typically employ current-carrying winding coils to
produce a magnetic field. It is inadequate for current-carrying
applications. Based on the linear magneto-mechanical
equations, Braghin et al [25] recently developed a linear
dynamic model of the GMMA for active vibration control.
However, the nonlinear hysteresis behavior of the GMMA
was not considered. Up to now, few works have dealt with
complete dynamic behavioral descriptions of GMMAs.

For such motivations, this paper presents a novel
comprehensive modeling approach to completely describe
the dynamic behaviors of GMMAs based on descriptions
of nonlinear electromagnetic behavior, the magnetostrictive
effect and the frequency response of the mechanical
dynamics. Towards this modeling approach, a two-module
comprehensive model with a two-order linear dynamic plant
preceded by an input hysteresis nonlinearity is developed. In
order to validate the developed model, the linear dynamic
part and the nonlinear hysteresis part of the proposed
comprehensive model are identified in sequence. For the
linear part, an approach based on axiomatic design theory is
adopted. For the nonlinear part, a Prandtl–Ishlinskii model
is introduced to describe the hysteresis nonlinearity and
a constrained quadratic optimization method is utilized to
identify the coefficients of the hysteresis model. Finally,
a prototype platform is built and experimental tests are
conducted. The experimental and simulation results clearly
verify the effectiveness of the proposed comprehensive model
and the corresponding identification method.

The remainder of this paper is organized as follows.
Section 2 states the comprehensive modeling approach,

2



Smart Mater. Struct. 22 (2013) 125005 G-Y Gu et al

Figure 2. Schematic illustration of a Terfenol-D based
magnetostrictive actuator.

section 3 details the model validation with experimental
results of the GMMA and section 4 concludes this paper.

2. Comprehensive modeling approach

2.1. Description of a GMMA

A GMMA is schematically shown in figure 2. It consists
mainly of current-carrying winding coils, a movable Terfenol-
D drive rod surrounded by the winding coils, a bias permanent
magnetic that produces the bidirectional movement of the
rod, a pair of preloaded springs and an output rod attached
to the Terfenol-D rod. The drive rod produces a stroke and
output force by the moving magnetic field generated by the
current-carrying winding coils on the physical principles of
Terfenol-D. The preloaded springs and the bias permanent
magnets are utilized to produce bidirectional movement of
the Terfenol-D rod. Since the Terfenol-D rod can produce
a large stroke and output force, no additional mechanism is
designed to amplify the output motion. Before the following
model development, two common assumptions are introduced
[6, 26, 27]: (i) no flux leakage losses and ideal flux linkage;
(ii) uniform magnetic flux density distribution throughout the
Terfenol-D rod.

2.2. Comprehensive model of the GMMA

As shown in figure 2, when the supplied current i is
applied through the winding coils, the magnetic field HN is
created in the area along the Terfenol-D rod. According to
Ampere’s law, the magnetic field applied to the Terfenol-D
rod is related to the current i by the relation HN = Ni/l,
where l is the length of the Terfenol-D rod and N is the
number of coil turns. The magnetic flux density BN is
then obtained by the constitutive equation BN = µ0µrHN ,
where µ0 and µr are the free permeability and relative
permeability respectively. The magnetic flux 8N related to
the magnetic flux density BN is obtained as 8N =

∫
A BN dA,

where A is the cross-sectional surface area. With a uniform
magnetic flux density distribution, the flux 8N is derived
as 8N = BNAr, where Ar is the cross-sectional area of the
Terfenol-D rod. In the presence of the magnetic flux, small
magnetic domains [26, 28] rotate or re-orient themselves
to cause internal strain in the Terfenol-D structure due to

the magnetostrictive effect. As a result, the Terfenol-D rod
stretches along the direction of the magnetic field to exert a
force FA on the output rod of the actuator, thus producing
a displacement x. In addition to the generated magnetic flux
8N , mechanical stresses imposed on the GMMA in turn
produce an induced magnetic flux 8T in the Terfenol-D rod
[22, 28, 29]. Therefore, the total flux 8 in the Terfenol-D rod
consists of two parts, expressed as

8 = 8N +8T. (1)

Remark. It should be noted that the GMMA works on the
principle of magnetostriction, which is a physical coupling
phenomenon between magnetic properties and mechanical
properties. Therefore, strains are generated in response to
an applied magnetic field; conversely, mechanical stresses
imposed on the GMMA can produce measurable changes in
magnetization. These two effects are reflected in the first and
second terms in (1).

To further characterize the coupling electro-magneto-
mechanical behavior of the magnetostrictive actuator, it
is essential to describe the coupling relationship of the
supplied current i in the electric domain and the generated
force FA in the mechanical domain, i.e. a representation
of i versus FA. Previous studies [3, 15, 28] have shown
that ferromagnetic materials present a nonlinear relationship
between the magnetic flux 8 and field HN (well known as
hysteresis). The hysteresis is an inherent nonlinear effect
because of loss phenomena [30, 31] taking place inside
magnetostrictive materials. Since the variable magnetic field
HN in magnetostrictive actuators is produced by employing
a current i through the winding coils, hysteresis can be
taken into account by adding a so-called current loss term
iH corresponding to the dissipated hysteresis loss [30]
in the expression for the supplied current i. Considering
its non-smooth and non-memoryless nature as well as
multi-valuedness, hysteresis makes the modeling and control
task quite challenging [32]. In this paper, a nonlinear operator
P is introduced to represent the dissipation of hysteresis
loss, which can be described by the hysteresis models [3,
11, 19, 33], for example, Jiles–Atherton, Preisach and
Prandtl–Ishlinskii models, through experimental data. In this
way, the current loss term iH due to the hysteresis is denoted as
iH = P(8). The supplied current i for the GMMA is thereby
governed by

i = iT + P(8) (2)

where iT = i − iH is regarded as the current to generate
mechanical force in the anhysteretic case.

Thus far, the hysteresis nonlinearity is separated in the
electrical domain as described in (2). In the anhysteretic
case, the linear two-part constitutive representation [34, 35]
based upon reducing the expansion of the Gibbs free energy
equation is used to characterize the coupling electro-magneto-
mechanical behavior by relating the electrical current iT
and magnetic flux 8 to the force FA and position x.
Under clamped conditions, i.e. x = 0, the generated magnetic
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Figure 3. Schematic representation of the proposed comprehensive
dynamic model of the magnetostrictive actuator. (a) Electrical
submodel. (b) Mechanical submodel.

flux through the Terfenol-D rod is defined by the clamped
inductance LA of the coils as follows [34, 35]

8 = 8N = LAiT. (3)

At the same time, the generated force can be obtained by

FA = TemiT (4)

where Tem is the electromechanical transduction coefficient.
In addition, according to (1), by setting the applied electrical
current to be zero, the magnetic flux induced from the
mechanical part as an external stress applied to the actuator
output rod is expressed as [6, 7, 34, 35]

8 = 8T = Tmex (5)

where Tme is the mechanoelectric transduction coefficient.
Note that the transduction coefficients Tem and Tme represent
the ability of transducers to convert electrical energy to
mechanical energy or vice versa, generally satisfying Tem =

Tme = Tm [34, 35].
With respect to the generated force FA, the mechanical

dynamic behavior of the actuator [27, 36] can be modeled
as a mass–spring–damper system in a frequency band within
the first mechanical mode of vibration according to Newton’s
laws of motion

mẍ(t)+ bsẋ(t)+ ksx(t) = FA (6)

where m is the equivalent mass of the moving part, bs is
the equivalent damping coefficient, and ks is the equivalent
stiffness.

Through the above discussions and notations, the com-
plete electro-magneto-mechanical model, including nonlinear
electro-magnetic behavior, the magnetostrictive effect and
the frequency response of the mechanical part is developed,
which can be schematically represented in figure 3. It
maps the relationships between current and magnetic flux
at the electromagnetic part to the force and displacement
at the mechanical part in a lumped parameter form. As
shown in figure 3(a), an electrical submodel, consisting of a
nonlinear hysteresis operator P, a linear inductance LA and
a magnetostrictive transformer Tm, is constructed to describe
the nonlinear electrical behavior, where P accounts for the
hysteresis effect and iH is the current loss due to this effect;
Tm electrically in series with the inductance LA represents

Figure 4. Block diagram of the comprehensive model.

the magnetostrictive effect, which is an electromechanical
transducer with a transformer ratio. In the mechanical
part, the lumped mass–spring–damper mechanical system is
represented in figure 3(b).

Substituting (2), (4) and (5) into (6), the comprehensive
dynamic model is expressed as

ẍ(t)+ 2ξωnẋ(t)+ ω2
nx(t) = Kω2

niT(t) (7)

iT(t) = P′(i(t)) (8)

with 2ξωn = bs/m, ω2
n = ks/m and Kω2

n = Tm/m, where a
new hysteresis operator P′(i(t)) is introduced for convenience
of the following identification and verification. It should be
noted that iT(t) is an internal variable which cannot be directly
measured.

From (7) to (8), the two-module comprehensive model
is developed to completely describe the behaviors of the
GMMA. The first module is a nonlinear hysteresis model to
describe the hysteresis nonlinearity, and the cascaded second
module is a linear second-order dynamic plant to represent
the dynamic behavior. For illustration, the block diagram of
the comprehensive model is schematically shown in figure 4.

Remark. (i) The comprehensive modeling approach for the
GMMA is proposed based on descriptions of nonlinear
electro-magnetic behavior, the magnetostrictive effect and
the frequency response of the mechanical dynamics.
Towards this modeling approach, a nonlinear operator
is introduced to represent the dissipation of hysteresis
loss in the electrical domain. In this case, the nonlinear
hysteresis effect is characterized in the electrical part,
and is separated from the linear dynamic plant in the
mechanical part. Finally, a two-module dynamic model
is developed to account for both the dynamics of the
GMMA and the hysteresis inherent to the GMM. As far
as the authors know, there is no such complete description
in the literature, although many efforts have been made,
such as [3, 15, 16, 20, 22–25, 37, 38]. Most of the
available results have focused on a static input–output
hysteresis nonlinearity, i.e., [3, 20, 37, 38], where the
dynamic behaviors of GMMAs were not considered.
Although a phenomenological Preisach model and a
linear dynamic model [15, 16] were combined to describe
the dynamic behaviors of the GMMAs, they had no
strong physical base. On the other hand, the current
was not taken into account in the models [22–24],
which was inadequate for current-carrying applications.
In the following development, the proposed model will be
justified by the experimental results.
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Figure 5. Architecture of the experimental platform.

(ii) It should be noted that with the proposed dynamic
modeling approach, the GMMA is described as a
linear second-order dynamic plant preceded by the input
hysteresis nonlinearity. This structure is similar to those of
the piezoelectric actuators [2, 36]. Therefore, the available
control approaches for piezoelectric actuators can be
introduced to control the GMMA with the developed
dynamic model.

3. Model validation

3.1. Experimental platform

In order to validate the proposed model of GMMAs, an
experimental platform is established, as shown in figure 5.
It consists of the following five parts: a GMMA with a
fixed base, a displacement sensor module, a power amplifier,
a DSPACE-DS1104 control board and a personal computer
for real-time rapid prototyping development. The GMMA
is an ETREMA standard actuator (Model 100LLSSE) with
100 µm displacement. The power amplifier (Model LVC2016
produced by AE Techron Inc.) operates on a current control
mode to generate the supplied current for the GMMA. A
capacitive position sensor (CPS, Model C23-C) is utilized
to measure the actual displacement of the actuator and a
position servo-control module (PSCM, Model CPL190) is
adopted to transfer the displacement to analog voltage in
the range −10 to 10 V. The displacement sensor module is
produced by Lion Precision Inc. and the sensitivity of the
CPS is 80 mV µm−1. A dSPACE control board equipped
with 16-bit analog to digital converters (ADCs) and 16-bit
digital to analog converters (DACs) is used to realize real-time
hardware-in-the-loop control using the MATLAB/Simulink
environment. As an illustration, figure 6 shows a block
diagram of the above experimental platform.

3.2. Model identification

Towards the developed comprehensive model of the GMMA,
the linear dynamic submodel (7) and the nonlinear hysteresis

submodel (8) are cascaded. Due to the existence of the
hysteresis nonlinearity, there has been no general approach
to identify the parameters for the comprehensive model until
now. As a compromise, the commonly adopted approach
in the literature is to identify the linear submodel and
nonlinear submodel separately by leveraging their special
characteristics [2, 39]. In the following development we will
follow this line.

3.2.1. Identification of the linear dynamic subsystem.
Inspired by the recent work in [40], the axiomatic design
theory (ADT) based approach is utilized in this work to
identify the parameters of the linear dynamic subsystem
(7). With the idea of the ADT-based approach, the overall
functional requirements (FRs) corresponding to the system
dynamic responses are broken down into near-decoupled sub-
functional requirements. Therefore, the identified parameters
(IPs) of the system model is determined to satisfy the
sub-functional requirements [40] using the experimental data.
The step response of the system can be used to determine the
parameters K, ξ and ωn in (7), where K is the ratio of the
displacement to the applied current in the steady state, and
ξ and ωn can be determined by using the following set of
equations (9) or (10)

ξ =
4tp√

(π ts)2 + (4tp)2

ωn =

√
(π ts)2 + (4tp)2

tstp

(9)

ξ =
− ln(os)√

π2 + (ln(os))2

ωn =
π

tp
√

1− ξ2
.

(10)

where tp is the peak time, ts is the settling time, and
os is the percentage overshoot. In addition, sinusoids with
broadband frequencies or band-limited white noise signals
can be typically used as excitation signals to the plant system,
and a magnitude plot is formed to directly obtain the resonant
frequency ωn.

A near-decoupled ADT-based identified hierarchy is
constructed in this work, as shown in figure 7. Experiments
are then conducted to identify the system parameters. It
is well known that the GMMA has severe nonlinearities
such as hysteresis over large displacements, and creep over
long time periods [20]. In order to estimate the parameters
of the linear part of the proposed model as accurately as
possible, small-amplitude input current should be supplied to
avoid distortion from hysteresis, as generally reported in the
literature [2, 41]. Also, a higher sampling frequency of 20 kHz
is set to capture the fast dynamic response of the system in
the first 6 ms when the creep behavior can be conservatively
neglected. The following algorithm is used in this work to
determine these FRs and IPs illustrated in figure 7.

Step 1. Low-amplitude (|i(t)| < 0.6 A) band-limited white
noise excitation signals are applied to the part. With

5
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Figure 6. Block diagram of the experimental platform.

Figure 7. Identified hierarchy of a near-decoupled ADT-based
approach.

the sampled input current and output displacement of
the system, a Bode plot is formed by using System
Identification Tool (ident) in MATLAB. Then, ωn
is obtained from the first resonant frequency in the
magnitude plot.

Step 2. The low-amplitude step response (i(t) = 0.726 A) of
the plant is captured. With the analysis of the transient
response, the steady-state output, the times tp and ts
and the percentage overshoot os can be derived.

Step 3. With the steady-state output of the stable step
response, the parameter K can be obtained.

Step 4. By using (10), the parameter ξ is derived with the step
response characteristics obtained in Step 2.

Based on the proposed approach and algorithm, the
system parameters in (7) are determined as K = 4.4, ξ = 0.28
andωn = 2π×3200 (rad s−1). Therefore, the transfer function
of the linear dynamic plant (7) can be obtained as follows:

G(s) =
1.7787× 109

s2 + 11 259s+ 4.0426× 108 . (11)

To verify the identified parameters, figure 8 shows the
comparison of experimental data and model simulation data.
It can be clearly observed that the developed dynamic model
with the identified parameters closely follows the dynamic
response of the tested GMMA.

Figure 8. Comparison of the experimental response and model
simulation response: blue solid—experimental data; red dash
star—model simulation data.

3.2.2. Description of the hysteresis nonlinearity. With
the identified parameters of the linear dynamic part (11),
the following step is to describe and identify the hysteresis
nonlinearity (8). There are many available hysteresis models
to describe the hysteresis of GMMAs. The reader may
refer to [3] for a recent review. In this work, just for the
purpose of model validation, a modified Prandtl–Ishlinskii
(MPI) model [33] is selected as an illustration. Certainly,
other hysteresis models, such as the Jiles–Atherton model and
the Preisach model, can also be selected depending on the
different applications.

With the MPI model, the hysteresis nonlinearity in (8) can
be described as follows:

iT(t) = g(i(t))+
n∑

i=1

b(ri)Fr[i](t) dr (12)

where g(i(t)) = a1i3(t) + a2i2(t) + a3i(t) + a4 is selected in
this work to adjust the overall shape of the hysteresis loop;
b(ri) is the weighted coefficient at the threshold of ri; n is the
number of the play operators used for identification; Fr[i](t)
is the classical play operator defined as

Fr[i](0) = fr(i(0), 0)

Fr[i](t) = fr(i(t),Fr[i](ti))
(13)

6
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Figure 9. Comparisons of experimental data and comprehensive model output. (a) Displacement versus time. (b) Hysteresis loop.

for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1 with

fr(v,w) = max(v− r,min(v+ r,w)) (14)

where 0 = t0 < t1 < · · · < tN = tE is a partition of [0, tE],
such that the input current i(t) is monotone on each of the
subintervals [ti, ti+1]. It should be noted that the selection of
g(i) in the MPI model (12) has no general criterion, which
provides a certain freedom for the designers to extend it [33].
In this work, a third-order polynomial function is selected on
the basis of the prior experimental data.

To identify the coefficients of the hysteresis model (12),
a specific amplitude-decreasing sinusoidal signal is designed
to drive the GMMA. The frequency of the input is chosen as
1 Hz to avoid exciting the dynamic response of the system.
After the parameters of the linear dynamic subsystem have
been determined, the hysteresis output can be approximately
calculated by the inverse of the linear dynamic subsystem
(11). Thus, the weighted coefficient b(ri) and the coefficients
of the third-order polynomial function ai in (12) can be
obtained by the following constrained quadratic optimization

min{[Cp− d]T[Cp− d]} (15)

with constraints

p(i) ≥ 0, i ∈ {1, 2, 3, . . . , 20} (16)

where p = [b(r1), . . . , b(r16),−a1,−a2, a3, a4]
T, C =

[Fr1 , . . . ,Fr16 , i3, i2, i, 1], d is the calculated hysteresis out-
put. Based on the nonlinear least-square optimization toolbox
in MATLAB, the parameters of the MPI model are identified
using the experimental data which are listed in table 1.

With the identified model parameters, figure 9 shows the
comparisons of the experimental results and simulation results
of the identified comprehensive model. Figure 9(a) shows the
model prediction performance with the modeling error, and
figure 9(b) shows the comparison of the hysteresis loops.
From figure 9, it is clearly observed that the model prediction
results correspond well with the experimental results with a
maximum error of less than 2.5% of the total range.

Table 1. Coefficients of the hysteresis model.

Numbers ri bi ai

1 0.01 0.5125 −0.0013
2 0.1183 0.4244 −0.0341
3 0.3349 0.0533 0
4 0.4431 0.0639 0.2819
5 0.5514 0.0424
6 0.6597 0.0288
7 0.7680 0.0707
8 0.8763 0.0718
9 0.9846 0.0230

10 1.2011 0.1411
11 1.4177 0.0193
12 1.5260 0.0163
13 1.8508 0.1681
14 2.0674 0.1685

3.3. Experimental verification

In this section, a series of excitation signals with different
amplitudes and frequencies are utilized to validate the
modeling and identification approaches for the GMMA.

The experimental results are shown in figures 10–12.
Figure 10 shows comparisons of the experimental output
and the developed model prediction output under different
amplitude currents, where the amplitude-dependent hysteresis
loops of the GMMA are predicted. Figure 11 shows the
comparisons for different frequency input signals with
frequencies up to 100 Hz. From figures 10 and 11, it can be
seen that the comprehensive model developed can predict the
hysteresis behaviors of the GMMA well. In order to further
address the validity of the proposed comprehensive model,
figure 12 shows the prediction performance and modeling
error under a complex harmonic excitation. Therefore, we
can demonstrate that the proposed model and the identified
parameters account well for both the dynamic characteristics
and hysteresis nonlinearity of the tested GMMA. It should be
noted that we focus on a comprehensive modeling approach
for the GMMA based on complete descriptions of nonlinear
electro-magnetic behavior, the magnetostrictive effect and
the frequency response of the mechanical dynamics. The

7
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Figure 10. Model validation with different amplitude input signals. (a) Driving current: 2.5 sin(2π t). (b) Driving current: 3.0 sin(2π t).
(c) Driving current: 3.5 sin(2π t). (d) Driving current: 4.0 sin(2π t).

Figure 11. Model validation with different frequency input signals. (a) Driving current: 3.0 sin(2π t). (b) Driving current:
3.0 sin(2π × 10t). (c) Driving current: 3.0 sin(2π × 50t). (d) Driving current: 3.0 sin(2π × 100t).

8



Smart Mater. Struct. 22 (2013) 125005 G-Y Gu et al

Figure 12. A complex harmonic excitation: i(t) = 4 sin(8.80t)
+ 2.5 sin(2.51t + π/2).

rate-independent hysteresis model (12) is employed to
validate the proposed modeling approach. In the experiments,
the maximum frequency for the validation is 100 Hz, as
shown in figure 11. In order to validate the proposed model
with even higher frequencies, the rate-dependent hysteresis
model should be used. In this work, the model development
for rate-dependent hysteresis behavior is not considered
because there is no a general model for the rate-dependent
hysteresis description of the GMMA. In fact, modeling
the rate-dependent hysteresis itself is an interesting and
challenging research topic [41–43]. It will be investigated in
the future on the basis of this work.

4. Conclusion

In this paper, a novel comprehensive modeling approach
for GMMAs is proposed and a corresponding identification
method is presented. To verify the effectiveness of the
proposed model and the identification method, a prototype
platform is established and experimental tests with a series
of excitation signals are conducted. The experimental results
clearly demonstrate the excellent performance of the proposed
modeling approach. Several distinct features of this paper are
summarized as follows.

(i) A comprehensive dynamic model of the GMMA
is developed based on descriptions of nonlinear
electromagnetic behavior, the magnetostrictive effect and
the frequency response of the mechanical dynamics. It
maps the relationships between current and magnetic flux
at the electromagnetic part to force and displacement
at the mechanical part in a lumped parameter form.
Thus, the proposed model can be characterized as a
linear dynamic plant proceeded by an input hysteresis
nonlinearity.

(ii) To identify the comprehensive model, the linear dynamic
part and the nonlinear hysteresis part are estimated
separately. For the linear part, an ADT based approach is
used based on both the transient-response and frequency-
response data. Then, a MPI model is introduced to
describe the hysteresis nonlinearity and a constrained

quadratic optimization method is adopted to identify its
parameters.

(iii) An experimental platform with the GMMA is estab-
lished. Experimental tests with a series of excitation
signals are conducted to verify the effectiveness of the
proposed comprehensive model and the corresponding
identification method.
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