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Abstract Hysteresis of piezoelectric actuators is
rate-dependent at high frequencies, but most of the
hysteresis models are rate-independent and cannot
describe the rate-dependent hysteresis nonlinearity
independently. In this paper, a modified Prandtl-Ishlinskii
(P-I) model is proposed to characterize the rate-dependent
hysteresis of piezoelectric actuators under sinusoidal
excitation. This model is formulated by a mth-power
velocity damping model in conjunction with the
rate-independent P-I model. The parameter identification
of this model is divided into two steps using different
experimental data and algorithms. The particle
swarm optimization is introduced first to identify
the rate-independent parameters, and the nonlinear least
square method is adopted afterwards to identify the
rate-dependent parameters which are functions of the
excitation frequency. Moreover, the proposed P-I model
is developed to describe hysteresis nonlinearity under
triangular excitation by introducing weighted functions,
i.e., λi. Finally, the model results attained under the
sinusoidal and triangular inputs at different frequencies
are compared with the corresponding experimental data.
The comparisons demonstrate that the proposed P-I model

can well describe hysteresis nonlinearity under sinusoidal
excitation up to 1,500 Hz and triangular excitation up to
250 Hz, respectively.

Keywords Piezoelectric Actuators, Hysteresis Modelling,
Rate-dependent, Prandtl-Ishlinskii

1. Introduction

Piezoelectric actuators (PEAs) have been widely used in a
variety of applications, such as atomic force microscopes
[1], lithography [2] and micro-manipulation [3]. The
advantages of piezoelectric actuators are quick response,
large force, high positioning resolution, small size and
small thermal expansion during actuation. However, the
main drawback in the output displacement of the PEA
is hysteresis nonlinearity, which can cause positioning
inaccuracy and even lead to the instability of the closed
system.

The direct solution to deal with the hysteresis effect is
inverse compensation, aiming to cancel the hysteresis
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effect by constructing the inverse of a hysteresis model. A
number of hysteresis models are available in the literature
describing hysteresis nonlinearity, such as the Bouc-Wen
model [4], the Dahl model [5], the Preisach model [6] and
the P-I model [7–9]. Among these models, the Preisach
model and its subclass P-I model are by far the most
well-known and widely used phenomenological models.
However, most of these models cannot describe the
rate-dependent characteristic of the PEA.

In contrast to the rate-independent hysteresis model, the
shape of the rate-dependent hysteresis loop varies with
the input frequency. It was reported in the literature
that the hysteresis effect can be modelled in series with
the dynamics of the actuator, i.e., the output of the
rate-independent hysteresis model is the input of the
dynamic model [10]. Instead of separately modelling
the two interacting dynamic effects, some researchers
treated their combined effect phenomenologically and
proposed the modified rate-dependent hysteresis model
to account for hysteresis nonlinearity at varying actuation
frequencies. Mayergoyz [11] proposed a rate-dependent
Preisach model by employing output rate-dependent
density functions. Bertotti [12] proposed a dynamic
generalization of the scalar Preisach model by assuming
the input rate-dependent behavior of delayed relays.
By introducing the dependence of the Preisach function
on the input variation rate, Yu et al. [13] developed
a new dynamic Preisach model. Mrad and Hu [14]
presented a dynamic Preisach hysteresis model to describe
hysteresis nonlinearity of piezoceramic actuators up to
800 Hz by adopting an average input rate-dependent
density function. Xiao and Li [15] characterized hysteresis
nonlinearity in the 0-300 Hz frequency range by a
modified Preisach model which featuring the weighted
sum of density functions.

The modifications mentioned above generally focus on
the Preisach model by including the speed of the input
in the density functions. It should be noted that as a
subset of the Preisach model, the P-I model is simpler and
its inverse can be computed analytically, making it more
attractive for real-time applications [7]. However, as far
as we know, there are only a few studies focusing on the
rate-dependent P-I modelling. Ang et al. [16] and Tan
et al. [17] observed in their tests that the slope of the
measured hysteresis loop of a piezoelectric actuator varied
almost linearly with the input rate. Thus, they modelled
the rate-dependence by linearly varying the weights of the
backlash operators according to the input rate. However,
in this way, the actuation frequency is limited in the low
range, such as 40 Hz. By introducing a dynamic threshold
in the play operator, a rate-dependent P-I model [18] is
proposed to describe rate-dependent hysteresis up to 500
Hz. However, the dynamic threshold has a complex
format with many parameters, making the rate-dependent
P-I model hard to adjust and implement. As an alternative,
a dynamic threshold with a simple format is utilized in
[19–21] to develop a new rate-dependent P-I model, which
has a relatively simple format with fewer parameters and
the analytical form of an inverse. However, the accuracy of
this model will deteriorate when the frequency increases.

In this paper, a mth-power velocity damping model is pro-
posed, which is in conjunction with the rate-independent
P-I model to formulate a modified P-I model for the
description of rate-dependent hysteresis. The parameter
identification is divided into two steps using different
experimental data and algorithms. The rate-independent
parameters are identified by the particle swarm optimiza-
tion, and the rate-dependent parameters are identified by
the nonlinear least square method, and then can be fitted
to the frequency by the polynomials. It should be noted
that this combined P-I model is restricted to the sinusoidal
inputs. In order to characterize the hysteresis under
triangular excitation, the modified P-I model is developed
with weighted functions. The validity of the proposed
P-I model is demonstrated by experiments under both
sinusoidal and triangular inputs over a wide range of
frequencies. The contributions of this work are threefold:
1. Distinct from the works [16–21], the modified P-I model

proposed for rate-dependent hysteresis in this work is
constructed by a rate-independent P-I model in con-
junction with a mth-power velocity damping model.

2. The proposed P-I model can describe hysteresis nonlin-
earity well under sinusoidal excitation up to 1,500 Hz,
while the actuation frequencies in the previous studies
are all below 800 Hz.

3. By introducing the weighted functions λi, we develop
a new modified P-I model to precisely describe the
hysteresis behavior under triangular excitation up to
250 Hz.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the experimental setup and hysteresis test.
Section 3 introduces the rate-independent P-I model and
its parameter identification. The modified P-I model for
the description of rate-dependent hysteresis is proposed
in Section 4. Section 5 demonstrates the effectiveness
of the proposed hysteresis model under sinusoidal and
triangular inputs, and Section 6 draws conclusions.

2. Experimental setup and hysteresis test

2.1 Experimental setup

The experimental platform is shown in Figure 1(a). A
prototype of the XY stage [22] is fabricated using the wire
electrical discharge machining (WEDM) technique with
aluminium 7075. The two pre-selected PZTs are mounted
to drive the stage, and a dual-channel high-voltage am-
plifier (HVA) with a fixed gain of 20 (a bandwidth of 10
kHz) is used to provide excitation voltage (0-200 V) for
the PZTs. Two capacitive sensors (Probe 2823 and Gauging
Module 8810 from MicroSense, range of +/− 10 µm with
an analogue output of +/− 10 V and bandwidth of 10
kHz) are adopted to measure the displacements of the
end-effector along the X- and Y-axes. A dSPACE-DS1103
board equipped with 16-bit analogue-to-digital converters
(ADCs) is utilized to output the excitation voltage for the
HVA and capture the real-time displacement information
from the capacitive sensors. The block diagram of the
whole experimental setup is shown in Figure 1(b).
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(a)

(b)

Figure 1. The experimental setup: (a) experimental platform;
(b) block diagram

2.2 Hysteresis test

To study the rate-dependent property of the PZT, a series
of sinusoidal input signals with fixed amplitude (50 V)
and increased frequencies (in the range of 10-1,500 Hz)
are applied to the PZT through dSPACE and the voltage
amplifier. The relationship between the input voltage
and output displacement can be seen in Figure 2. It
demonstrates that an increase in the frequency of the input
voltage not only yields greater width of the hysteresis loop,
but also reduces the peak-to-peak output displacement
of the PZT, which has been illustrated in a few reported
studies [18]. Furthermore, the hysteresis loops under a
fixed frequency and increasing amplitudes are illustrated
in Figure 3. It is obvious that the hysteresis effect is also
amplitude-dependent. It should be clarified that, in this
work, we mainly focus on frequency-dependent hysteresis
behaviors. The hysteresis curves with both major and
minor loops are not addressed in the remainder of this
paper.

3. Rate-independent Prandtl-Ishlinskii model

The P-I model is widely used to describe hysteresis non-
linearity due to its reduced complexity and the analytical
form of the inversion. Mathematically, the classical P-I
model can be written as [7]:

y(t) = av(t) +
R∫

0

p(r)Fr [v] (t)dr (1)

where v(t) and y(t) are the control input and output
displacement, respectively, a is a positive value and p(r)
is the density function. Since the density function p(r)
generally vanishes for large values of r, the choice of
R = ∞ as the upper limit of integration is widely used

i ri pi ai
1 0.06 0.1898 -0.0820
2 0.12 0.0572 0.6625
3 0.18 0.0784
4 0.24 0.0616
5 0.30 0.0611
6 0.36 0.0632
7 0.42 0.0521
8 0.48 0.3420
9 0.54 0.1143

10 0.60 0.0607

Table 1. The identified parameters of the rate-independent P-I
model

in the literature for the sake of convenience. Fr[v](t) is the
one-side play operator, which is defined as:

Fr[v](0) = max{v(0)− r, min{v(0), 0}}
Fr[v](t) = max{v(t)− r, min{v(t), Fr[v](t − T)}} (2)

where r is the input threshold of the play operator and T is
the sampling period.

Remark 1. It is worth mentioning that the one-side play
operator is adopted in this work due to the positive excitation
nature of the piezoelectric actuator used. For the piezoelectric
actuators with a positive and negative excitation, one can
directly replace the one-side play operator with the classical
two-side play operator. Without loss of generality, we use the
one-side play operator in this work.

Considering the fact that the classical P-I model is devel-
oped for the description of symmetric hysteresis, an asym-
metric P-I model was proposed in our previous work [8]
to characterize the asymmetric hysteresis of piezoelectric
actuators, which is defined as:

y(t) = g(v(t)) +
R∫

0

p(r)Fr [v] (t)dr (3)

where g(v(t)) = a1v3(t) + a2v(t) is a polynomial input
function with constants a1 and a2, and p(r) and Fr[v](t)
are defined the same as those in the classical P-I model (1).

In order to be conveniently implemented, a discrete form
of the model is given as follows:

y(t) = a1v3(t) + a2v(t) +
N

∑
i=1

piFri [v](t) (4)

where pi denotes the weighting value of the play oper-
ator with the fixed threshold value ri = i

N ‖v(t)‖∞, i =
1, 2, ..., N, and N is the number of the play operator. As
an illustration of this work, a modified particle swarm
optimization (MPSO) [23] is introduced to identify the
parameters a1, a2, pi. Certainly, other optimization algo-
rithms - for instance, the constrained quadratic optimiza-
tion algorithm and the unconstrained nonlinear optimiza-
tion algorithm - can also be used. One of the key problems
of the MPSO method is the selection of the fitness function.
In this work, the fitness function is chosen as:

F(x) =
1
n

n

∑
i=1

(yi − ya
i )

2 (5)
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Figure 2. Measured hysteresis loops at different sinusoidal frequencies
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Figure 3. Measured hysteresis loops with different amplitudes at
100 Hz.

where n is the total number of the experimental data, yi
and ya

i are the predicated data via the rate-independent
asymmetric P-I model and the experimental data at the ith
sampling time, respectively, and x = {p1, p2, ..., pN,a1, a2}
denotes the identified parameters, which are summarized
in Table 1. In this work, the rate-independent P-I model
uses the play operator of order 10 (N=10), and the 10 Hz
sinusoidal signal is used as the rate-independent experi-
mental data for the identification.

The P-I model mentioned above is just based on the
rate-independent situation, but the real hysteresis problem
is rate-dependent (as mentioned in Section 2.2). Therefore,
some modifications of the rate-independent P-I model are
necessary, which are discussed in Section 4.

4. Modified Prandtl-Ishlinskii model for the description of
rate-dependent hysteresis

4.1 Modified P-I model

Examination of the hysteresis loops in Figure 2 shows that
hysteresis nonlinearity has a relationship with the input
variant rate. Based on the observed variations in hysteresis
behavior, a mth-power velocity damping model [24] is
employed in this work to account for the rate-dependent
effect, which is usually expressed as:

yvd(t) = c|v̇(t)|msgn(v̇(t)) (6)

where c is the mth-power velocity damping coefficient and
m is a positive constant. The function sgn(v̇(t)) is defined
as:

sgn(v̇(t)) =





1 v̇(t) > 0

0 v̇(t) = 0

−1 v̇(t) < 0
(7)

Although the power m can take any positive value, some
previous studies use the fixed integer value for the expo-
nent m, and thus only the coefficient c is considered as
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Figure 4. The response characteristic of the mth power
velocity damping model under the sinusoidal input with different
frequencies

the model parameter to be estimated. However, both the
coefficient c and the power m will be estimated later in this
work to improve the identified results.

The dependence of the mth-power velocity damping
model is investigated under the sinusoidal inputs with
different frequencies (10, 100 and 500 Hz), while the
parameters are selected as: c = 0.2, m = 1. Figure 4
illustrates the outputs of the proposed damping model.
The results exhibit the increasing width of the hysteresis
loops with an increase in the frequency of the input.

By incorporating the mth-power velocity damping model
into the rate-independent P-I model, a modified P-I model
for the description of rate-dependent hysteresis can be
written as:

y(t) = kyRI(t) + c
∣∣v̇(t)/Q

∣∣msgn(v̇(t)) (8)

where yRI(t) is the rate-independent P-I model output
stated previously in Eq. (4), k is a constant, and the term
Q = 2π f A is employed to normalize v̇(t), where f and A
are the frequency and amplitude of the sinusoidal signal.
From the equation, it can be observed that the role of the
velocity damping term is regarded as a minor modification
of the rate-independent P-I model:

y(t) = kyRI(t) + cyMD(t) (9)

where:

yRI(t) = a1v3(t) + a2v(t) +
N
∑

i=1
piFri [v](t)

yMD(t) =
∣∣v̇(t)/Q

∣∣msgn(v̇(t))
(10)

When k is equal to one and c is equal to zero, the modified
P-I model for rate-dependent description can be directly
reduced to the rate-independent model.

Remark 2. It is worth mentioning that constructing the ana-
lytical inverse of the proposed hysteresis model is complex. As
an alternative, a direct inverse modelling approach proposed in
the references [25, 26] can be applied to characterize the inverse
hysteresis effect directly from the experimental data due to the
fact that the inverse P-I model is also a P-I type model. As
such, the constructed P-I model for the inverse hysteresis can
be directly used as a compensator in the feedforward path to

compensate for the hysteresis effect. The detailed principles of the
direct approach can be found in the references [25, 26]. It should
be noted that this paper focuses on the development of the new
modified P-I model for the description of rate-dependent hystere-
sis, and the related work on inverse hysteresis compensation is
not presented.

4.2 Modified P-I model identification

The parameter identification of the modified P-I model
is to identify the parameters p1, p2, ..., pN,a1, a2, k, c, m.
According to the type of experimental data used for
identification, these parameters can be divided into
two groups: the rate-independent parameters including
p1, p2, ..., pN,a1, a2 and the rate-dependent parameters
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Figure 5. Parameters of the modified P-I model versus frequency
from 10 Hz to 1,500 Hz and the corresponding fitting curves: (a)
k( f ); (b) c( f ); (c) m( f )
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i b1i b2i b3i
1 0.9978 4.4260e-004 0.8015
2 -4.6440e-004 -1.4070e-004 7.0120e-004
3 3.8680e-007 2.1690e-008 -1.1250e-006
4 -2.2920e-010 — 4.8030e-010

Table 2. The coefficients of parameters k( f ), c( f ), m( f )

including k, c, m. The rate-independent parameters are
identified under a 10 Hz sinusoidal excitation, while the
rate-dependent parameters are identified under a series of
sinusoidal excitation in the 10-1,500 Hz frequency range.
As the first group parameters have been identified in
Section 3, we will focus on the identification of the second
group parameters in this section.

A series of sinusoidal input signals with fixed amplitude
(50 V) and increased frequencies (in the range of 10-1,500
Hz) are applied to the PZT, as shown in Figure 2. The
input voltage v(t) and output displacement ya(t) are used
to identify the rate-dependent parameters, which can be
considered in the form of x = {k, c, m}. Thus, Eq. 9 can be
written in the form of (11):

yi = f (vi, x), i = 1, 2, ..., n (11)

The purpose is to find x via the nonlinear least square
method for which the following criterion must be mini-
mized:

F(x) =
n

∑
i=1

ei
2 =

n

∑
i=1

( f (vi, x)− ya
i )

2 (12)

The optimization problem can be implemented through
the lsqnonlin function in the MATLAB optimization tool-
box, and the parameters are plotted against the frequency
in Figure 5. Figure 5 (a) and (b) show that the higher the
frequency, the smaller that k will be, while the larger that
|c| will be. The parameter m exhibits insignificant change
against frequency, and thus it can be approximated by a
constant 0.9 or fitted by a polynomial for better accuracy.

In this work, the three parameters are all approximated
by a polynomial function with respect to the frequency
using the curve-fitting toolbox in MATLAB. The identified
parameters k, c, m are expressed as follows:

k( f ) = b11 + b12 f + b13 f 2 + b14 f 3

c( f ) = b21 + b22 f + b23 f 2

m( f ) = b31 + b32 f + b33 f 2 + b34 f 3
(13)

where f denotes the sinusoidal frequency and the coeffi-
cients are summarized in Table 2. Note that in Figure 5
(c) the point with a frequency equal to 10 Hz ( m( f =
10Hz)) is omitted when fitting the curve, because the
corresponding parameter c( f = 10Hz) is close to zero -
in this case, the value of m is of no importance.

4.3 Modified P-I model for triangular excitation

The modified P-I model mentioned in Section 4.1 is just
based on a mono frequency sinusoidal input signal. When
the excitation is not the sinusoidal input, such as the
triangular wave which is widely used in atomic force
microscopy, this model will lose efficacy. Therefore, some

modifications of the P-I model mentioned above should
be necessary for the triangular wave. Motivated by the
Preisach model proposed in [15] which featured with the
weighted sum of µ−density, we also employ the weighted
functions in this work. As such, Eq. (9) is rewritten as:

y(t) =
M

∑
i=1

λi (k(i f0)yRI(t) + c(i f0)yMD(t)) (14)

where i and M denote the index and total number of har-
monics, f0 is the fundamental frequency of the triangular
wave, k(i f0) and c(i f0) are two rate-dependent parameters
calculated from Eq. (13) and λi denotes the weight for the
ith harmonic.

According to the Fourier series theory, the triangular wave
can be combined by harmonically related sinusoidal sig-
nals. It can be described as:

v(t) = B +
M

∑
i=1

Ai A sin(ωi t) (15)

where Ai = 8
π2i2 sin(πi

2 ), ωi = 2πi f0, f0, A and B are
the fundamental frequency, amplitude and bias of the
triangular wave, respectively. Thus, the weight for the ith
harmonic can be calculated by:

λi = Ai

/
M

∑
i=1

Ai =
8

π2i2
sin(

πi
2
)

/
M

∑
i=1

8
π2i2

sin(
πi
2
) (16)

The frequency spectrum is plotted in Figure 6 for the
triangular wave with a 100 Hz fundamental frequency
(where B = 70, A = 50, M = 9), and the corresponding
values of λi are also plotted in Figure 6. Based on these
weights, the model output can be calculated according to
Eq. (14).

5. Model verification

After all the parameters of the modified P-I model are
identified, some experiments are carried out to verify the
effectiveness of the proposed hysteresis model. The first
experiment is to investigate the performance of the modi-
fied P-I model under the sinusoidal signals with different
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Figure 6. The frequency spectrum for the triangular wave with a
fundamental frequency of 100 Hz: (a) Ai ; (b) λi
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Figure 7. Measured responses (blue line) at 10, 400 and 1,200 Hz compared with those predicted from the (a)-(c) rate-independent P-I
model [8], the (d)-(f) rate-dependent P-I model based on dynamic thresholds [19, 20], and the (g)-(i) proposed modified P-I model for the
description of rate-dependent hysteresis
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Figure 8. Comparisons of (a) maximum errors and (b) rms
errors between measured responses and those predicted from the
rate-independent P-I model [8], rate-dependent P-I model based
on dynamic thresholds [19, 20], and the proposed modified P-I
model under sinusoidal inputs at 10-1,500 Hz

frequencies. The hysteresis loops, estimated rms errors
and maximum errors are measured and summarized. The
second experiment is to investigate the performance of the

proposed hysteresis model under the triangular wave with
different frequencies.

In the first experiment, the 100 V p-p sinusoids with fre-
quencies in the range of 10-1,500 Hz are used to drive the
piezo-stage, and the displacement responses are collected
by the dSPACE system. Figure 7 shows the comparison
of the measured hysteresis loops with those predicted
from the modified P-I model under the sinusoidal input
signals at 10, 400 and 1,200 Hz. The hysteresis loops
predicted from the rate-independent P-I model [8] and the
rate-dependent P-I model based on dynamic thresholds
[19, 20] are also plotted in Figure 7 for comparison. The
dynamic threshold function used in the rate-dependent P-I
model [19, 20] is defined as: ri(v̇(t)) = αi + β |v̇(t)|, where
α and β are constants. From Figure 7, it can be clearly
observed that the hysteresis loops predicted from the
rate-independent P-I model can only describe hysteresis
nonlinearity at very low frequency, such as 10 Hz. The
rate-dependent P-I model based on dynamic thresholds
is better than it, which can describe the hysteresis up to
400 Hz. However, when the frequency reaches 1,200 Hz,
the accuracy of this model worsens. The hysteresis loops
predicted from the proposed modified P-I model match the
measured curves very well, even at a high frequency, such
as 1,200 Hz.
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Figure 9. Comparisons of the measured results and the predicted results from the modified P-I model under triangular input signals at
different frequencies: (a) 100 Hz; (b) 250 Hz; (c) 500 Hz

A complete comparison of these three hysteresis models
under sinusoidal excitation in the 10-1,500 Hz range is
shown in Figure 8 in terms of the maximum error and the
rms error, which are defined as:

emax =
max|yi−ya

i |
max ya

i −min ya
i
× 100%

erms =

1
n

√
n
∑

i=1
(yi−ya

i )
2

max ya
i −min ya

i
× 100%

(17)

It can be clearly observed that the proposed modified
P-I model significantly reduces the estimated errors in
contrast to the other two hysteresis models. From Figure
8, we can see that the maximum error and the rms error
of the rate-independent P-I model increase linearly with
frequency. When the frequency increases to 300 Hz, the
maximum error and the rms error increase to 11.1099%
and 7.1648%, respectively. These large estimated errors
indicate that the rate-independent P-I model cannot de-
scribe hysteresis nonlinearity well at high frequencies. The
results also clearly show that the rate-dependent P-I model
with the dynamic thresholds, as proposed in [19, 20],
yields large errors at high excitation frequencies. The
maximum error exceeds 37.7% at a 1,500 Hz excitation
frequency, while the rms error approaches 15.3%. In
contrast, the maximum error and the rms error of the
proposed modified P-I model are limited to 6.5% and
3%, respectively, throughout the entire frequency band of

10-1,500 Hz. It is shown that the proposed modified P-I
model can characterize the hysteresis behavior very well
even at high frequencies.

In the second experiment, the 100 V p-p triangular waves
with different fundamental frequencies are used to test
the effectiveness of the proposed hysteresis model. The
hysteresis loops, the displacement responses and the es-
timated errors are plotted in Figure 9. From Figure 9,
it can be seen that the responses from the modified P-I
model can match the measured responses very well at
both 100 Hz and 250 Hz. The maximum errors of these
two cases are 0.1110 µm and 0.1091 µm, which are 2.45%
and 2.46% respectively. In addition, the maximum error
at 500 Hz is up to 9.40%, showing that the proposed
model cannot characterize hysteresis nonlinearity well un-
der triangular excitation with too high frequency. As
mentioned in Sec. 4.3, the triangular wave is composed
of a ninth-order harmonic wave at the very least. Thus,
the componential frequencies of the triangular wave with
a 500 Hz fundamental frequency reach 4,500 Hz. This is
higher than the sinusoidal frequencies in the parameter
identification. Therefore, the modelling accuracy under
triangular excitation with a 500 Hz fundamental frequency
can be improved by increasing the sinusoidal frequencies
in the parameter identification.
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6. Conclusion

The mth-power velocity damping model and the
rate-independent P-I model are formulated to derive
a modified P-I model for predicting rate-dependent
hysteresis nonlinearities. The parameters of this model
are divided into rate-independent and rate-dependent
parameters, which are identified by particle swarm
optimization and the nonlinear least square method,
respectively. The rate-dependent parameters are fitted
by polynomials through the curve fitting toolbox of
MATLAB. Comparisons of the model results with the
measured data revealed very good agreement under
sinusoidal inputs in the 10-1,500 Hz frequency range.
However, this P-I model is restricted to the sinusoidal
inputs. To characterize hysteresis nonlinearity under
the triangular input signals, the proposed modified P-I
model is combined with the weighted functions, i.e., λi.
Comparisons of the model results with the measured data
show that the modified P-I model with weighted functions
can describe the hysteresis well under the triangular wave
up to 250 Hz. The experimental results for both sinusoidal
and triangular inputs demonstrate the effectiveness of
the proposed modified P-I model for the description of
rate-dependent hysteresis.
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