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Abstract—This paper presents a novel high-bandwidth control
approach for piezo-actuated nanopositioning stages. A delayed po-
sition feedback (DPF) controller is first developed in the inner loop
to damp the resonant mode of piezo-actuated stages. A general-
ized Runge–Kutta method (GRKM) is proposed to determine the
parameters of the DPF controller with pole placement. The ben-
efit of the DPF for active damping is its simple structure and ease
of implementation. Then, a high-gain proportional-integral (PI)
controller is designed in the outer loop to deal with the hysteresis
nonlinearity, disturbance and modeling errors. The stability of the
control system is analyzed via a graphical method. Finally, exper-
iments are conducted to demonstrate the effectiveness and supe-
riority of the proposed approach in terms of tracking accuracy at
high speed as compared to the PI controller.

Note to Practitioners—Piezo-actuated nanopositioning stages
play an increasingly important role in the fields of scanning probe
microscopy and micro/nano manipulation. They have the advan-
tages of fast response, large force, and fine resolution. However,
such stages inherently exhibit vibration and hysteresis behaviors
that could cause oscillations and positioning errors. This study
presents a two-degree-of-freedom high-bandwidth control ap-
proach, where the inner-loop delayed position feedback controller,
determined by a generalized Runge-Kutta method, is designed
to suppress the vibration effect, and the outer-loop high-gain PI
controller is adopted to improve the tracking performance in the
presence of hysteresis nonlinearity, disturbance and modeling
errors. The effectiveness of the proposed control approach is
demonstrated by experiments on a piezo-actuated nanopositioning
stage. Due to the simple structure and ease of implementation, the
developed control approach can be applied to other piezo-actuated
systems as well.

Index Terms—Delayed position feedback (DPF), high-band-
width control, nanopositioning stages, piezoelectric actuators.
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I. INTRODUCTION

W ITH the ability of generating three-dimensional images
of material surfaces at nanometer resolution, atomic

force microscopy (AFM) has been widely used in many ap-
plications [1], [2]. One of the key components of AFM is the
nanopositioning stage, which is employed to move the sample
in three directions [3], [4]. Most nanopositioning stages utilize
piezoelectric actuators for actuation due to the excellent ad-
vantages of fast response, high positioning precision, and large
stiffness. However, the nanopositioning stage suffers from two
major issues that degrade its positioning performance [5]–[8]:
1) the inherent hysteresis nonlinearity of the piezoelectric ma-
terial and 2) the highly resonant behavior due to the mechanical
dynamics.
To compensate for the hysteresis nonlinearities, many con-

trol approaches have been reported [9]–[16]. Therein, feedback
control with high gains is shown to be an effective method to
reduce the hysteresis effect and achieve accurate tracking of
references [15], [16]. However, the presence of lightly damped
resonance imposes restrictions on gain margins, limiting the
bandwidth of the controller and maximum SPM scan fre-
quency to 1/100th to 1/10th of the first resonance frequency
of the stages [17]. Damping of resonant peaks is an effective
method to increase the bandwidth of the feedback control. Dif-
ferent damping techniques have been reported in the literature
[18]–[23] such as positive position feedback, integral resonant
control, and integral force feedback. Feedforward controllers
[17], [24]–[26] such as inversion filters, input shaping tech-
niques, and feedforward control have also been reported to
suppress the resonant peaks. However, feedforward controllers
do not provide robustness to changes in system parameters
which is critical in nanopositioning systems. A more compre-
hensive study on the control of nanopositioning stages can be
found in [8] and [27].
Recently, the delayed position feedback (DPF) control

scheme has re-attracted researchers' attention due to the ad-
vances in analysis of delayed differential equations. It has
been widely used to reduce the unwanted vibrations in many
applications [28]–[32] such as dynamic structures, flexible
arms, and container cranes. The DPF control only employs
a delayed position signal to achieve active damping of the
resonance mode. The benefit is that, due to only one position
sensor is required, the control scheme has a simple structure
and ease of implementation. However, in this scheme, stability
analysis is often complicated because of the introduction of
time delay in the closed loop. In most cases, time delay is
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considered as a major source of instability, thus, many methods
have been reported to investigate stability of time delay systems
[33]. The most common method is the Padé approximation,
which substitutes the exponential time-delay term in the char-
acteristic equation with rational fraction. However, this simple
approach has a limitation in accuracy, and at worst lead to
instability of the system [34]. Other techniques such as the
direct method (DM) [35], the Lambert W function [36], and
the semi-discrezation method (SDM) [37], are known to be
effective methods to investigate the stability of time-delay
systems. Recently, a novel eigenvalue-based semi-analytical
method, the generalized Runge–Kutta method (GRKM), was
proposed in our previous research to predict the stability of
milling systems [38], and extended to control the time-delay
systems which was verified with high computational accuracy
and efficiency [39]. However, no real-time applications of the
GRKM were reported in the literature.
In this paper, we utilize the GRKM for high-bandwidth con-

trol of the piezo-actuated nanopositioning stages based on the
time delay control. To the best of the authors’ knowledge, this
work is the first attempt at introducing the time delay control
to the domain of high speed and high precision control of the
piezo-actuated nanopositioning stages. The contributions of this
work can be outlined as follows.
1) A DPF damping controller with a high-gain PI tracking

controller is proposed and implemented on piezo-actuated
stages to achieve the high-bandwidth tracking. The DPF
control has the advantages of excellent damping perfor-
mance, simple structure, and ease of implementation.

2) A GRKM is proposed for the pole placement of the plant
with DPF control, resulting in a stable and damped closed-
loop system. This approach was verified with high com-
putational accuracy and efficiency for controlling the time
delay systems.

3) The stability of the overall control system with time delay
is analyzed by a graphical method, in which the stability
boundary locus is plotted in the parameter plane.

The remainder of this paper is organized as follows. The
experimental setup and system identification are described in
Section II. In Section III, a high-bandwidth controller composed
of a delayed position feedback controller and a high-gain PI
controller is developed, and the stability analysis is performed.
Section IV presents the experimental results to verify the effec-
tiveness of the high-bandwidth controller, and the conclusion is
given in Section V.

II. SYSTEM DESCRIPTION AND IDENTIFICATION

A. Experimental Setup

The experimental setup is shown in Fig. 1. The setup con-
sists of a piezo-actuated stage, a dSPACE-DS1103 board, a
high-voltage amplifier (HVA), and a position servo-control
module (PSCM). The piezo-actuated stage is composed of an
one-dimensional flexure hinge guiding mechanism, a preloaded
piezoelectric stack actuator (PPSA), and a high-resolution
strain gauge position sensor (SGPS). The PPSA (PSt 150/7/100
VS12, Piezomechanik, Germany) is used to drive the flexure

Fig. 1. Experimental setup of the piezo-actuated nanopositioning stage.
(a) Experimental platform. (b) Block diagram.

mechanism with the maximum displacement of 75 m. The
SGPS integrated in the PPSA is used to measure the real-time
displacement through the variance of the electrical resistance
with the sensitivity of 0.148 V m and a resolution of 2.07 nm.
The dSPACE-DS1103 board (Germany), equipped with 16-bit
DAC and 16-bit ADC, is employed to implement the control al-
gorithms in the Matlab/Simulink environment on the computer.
The DAC board sends the signal generated by the computer to
the amplifier, which provides excitation voltage to the PPSA
in the range of 0–15 V. The ADC board is used to capture the
real-time displacement data, which is changed into analogue
voltage in the range of 0–10 V by the PSCM. The sampling
frequency of the system is set to 20 kHz. The block diagram of
the experiment setup is also shown in Fig. 1(b).

B. System Identification

To design a controller for the stages, the dynamicmodel of the
piezo-actuated nanopositioning stage is required. To obtain the
dynamic characteristic of the stage, a band-limited white noise
signal with amplitude of 100 mV and frequency range of 0.05
Hz to 10 kHz is utilized to excite the stage. The dSPACE con-
trol system is utilized to simultaneously capture the excitation
voltage and the correspondingmeasured displacement. It should
be noted that the low amplitude of the input signal is intended to
minimize the effect of the hysteresis nonlinearity. Therefore, the
plant can be represented as a linear dynamic system. Then, the
system identification toolbox of MATLAB is adopted to iden-
tify the dynamic model, which is expressed as

(1)
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Fig. 2. Comparison of frequency responses of the experimental results and the
simulation results of the identified model.

Fig. 2 shows the frequency responses of the experimental results
and model simulation results. From the figure, it can be seen that
in the frequency range of 1 to 4000 Hz, the identified model
captures the dynamics of the system with sufficient accuracy. It
should be noted that as the amplitude of the input increases, the
effect of hysteresis is server which can cause significant posi-
tioning errors. In this work, the hysteresis is deemed as an input
disturbance which can be mitigated by high-gain feedback con-
trol [15]. Therefore, the piezo-actuated stage is described by the
linear dynamic model together with a disturbance ,
where the hysteresis effect is involved in the unknown distur-
bance .

III. CONTROLLER DESIGN

The control objective in high-bandwidth nanopositioning
is to not only minimize the tracking error but also maximize
the tracking speed of the nanopositioning stage. Analyzing
the properties of the system model described in Section II,
it can be observed that there is an obvious resonant mode,
which will limit the tracking speed of the nanopositioning
stage. In the following, a delayed position feedback (DPF)
controller is firstly proposed to damp the system's resonant
mode. Then, a high-gain PI tracking controller is utilized to
achieve high-bandwidth nanopositioning.

A. Design of the DPF Controller

The DPF controller for a linear dynamic system is schemat-
ically shown in Fig. 3, where is the dynamics model of the
plant, is the unknown disturbances, represents the DPF con-
troller, is the feedback gain of the DPF, is the time delay
term, is the control input, is the output of the DPF, and

is the output of the plant. It can be seen that the DPF pos-
sesses the excellent advantages of the simple structure. It only
uses the signal from a position sensor, and only has two
design parameters. The critical feature of the DPF control is the
utilization of a controlled time delay in the feedback loop. By
adjusting the time delay and feedback gain , one can achieve
the pole placement of the closed-loop system in order to add ac-
tive damping to the lightly damped stage.

Fig. 3. Block diagram of the delayed position feedback control.

As shown in Fig. 3, the transfer function of the DPF can be
written as

(2)

Thus, the characteristic equation of the closed-loop system is
deduced as

(3)

Due to the exponential term, (3) is transcendental and results in
an infinite number of characteristic roots. Thus, it is not feasible
to specify all of the characteristic roots as the case of the systems
without time delays. Furthermore, the classical pole placement
methods for the systems without delays is no longer applicable.
As an alternative, GRKM, an eigenvalue assignment method
for the time delay systems, is proposed in our previous study
[38], [39]. Pole placement is achieved by assigning the max-
imal eigenvalue obtained via the GRKM. In designing a control
law for the time delay systems, it is crucial to handle the right-
most pole among the infinite number of ones. In this regard,
the GRKM is very powerful. By adjusting the parameters of the
DPF, i.e., the feedback gain and time delay , we can assign the
rightmost pole to the desired location. Therefore, the damping
performance of the closed-loop system can be improved.
In order to implement the GRKM for pole placement in the

nanopositioning stage, we rewrite the transfer function in (1) as

(4)

where , , ,
, , and .

The control signal is calculated based on the DPF con-
troller shown in Fig. 3, which is expressed as

(5)

Substituting (5) into (4) yields

(6)
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Defining a new vector , then the
delay differential equation (DDE) (6) can be transformed into

(7)

where

(8)

and

(9)

Based on the state space expression in (7), the GRKM is uti-
lized to analyze the stability of the dynamic system in (6) from
a discretizaiton point of view. The derivation of the GRKM is
detailed in Appendix A. The Floquet transition matrix with the
GRKM is deduced as

(10)

where denotes the inverse of matrix , and is the di-
cretization steps. The dimension of matrix is the same with
, i.e., , thus the dimension of the Floquet

transition matrix is also .
Define as the eigenvalues of the Floquet

transition martrix . Then, the Floquet exponents are deduced
as

(11)

Among the Floquet exponents, the one with the max-
imum real part corresponds to the rightmost characteristic root,
which is denoted as . The index is defined as

(12)

The DPF controller is designed to place the rightmost char-
acteristic root to a desired place of the left half plane. This
design is achieved by an optimization. The objective function is
chosen as

(13)

where denotes the desired characteristic root,
and denote the real part of and , respectively,
and and denote the imaginary part of

and , respectively.
Experiments were conducted on the nanopositioning stage to

demonstrate the effectiveness of the proposed controller. Open-
loop poles of the transfer function are computed as

(14)

Fig. 4. Frequency response for systems with and without the DPF control.

Fig. 5. Block diagram of the control.

In order to impart sufficient damping in the closed-loop system,
the desired closed-loop pole locations should be set further into
the left half plane. Here, we set the desired rightmost character-
istic roots as

(15)

A particle swarm optimization method [40] is introduced to
solve the optimization problem. The optimized parameters of
the DPF controller are , and .
Fig. 4 shows the frequency responses of the plant with and
without the DPF controller. The frequency response with the
DPF controller is presented by a red line. It is apparent from the
figure that the resonance peak of the plant has been well damped
by the DPF controller. Furthermore, it can be observed that
the DPF control has no detrimental effect on the frequency re-
sponses over the resonance frequency. Therefore, the damping
performance of the system has been improved significantly by
the DPF control.

B. High-Gain Feedback Controller

To minimize the tracking errors of the piezo-actuated stage,
a feedback controller is necessary in the control logic. Owing
to the damping imparted by the DPF control, a proportional-in-
tegral (PI) controller with high gains is implemented in the
feedback loop, which is illustrated in Fig. 5 with .
The main drawback is the existence of the time delay in the
closed loop, which may results in the instability. Thus, the sta-
bility of the closed-loop system is analyzed in the following via
a graphical method [41], [42], in which the stability boundary
locus is plotted in the parameter plane .
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Fig. 6. Computation of the critical frequency .

From Fig. 5, we can obtain the characteristic polynomial of
the closed-loop system, which is expressed as

(16)

Letting and solving the equation , we obtain

(17)

(18)

where and are defined in (50). The derivation of and
is detailed in Appendix B.
By letting vary from zero to , a stability boundary locus

for common roots of (17) and (18) can be plotted in the param-
eter plane . However, one can consider the frequency
below the critical frequency or the ultimate frequency since
the controller operates in this frequency range. Thus, the crit-
ical frequency can be used to obtain the stability boundary locus
over a possible smaller range of frequency such as
[42]. Substituting into the plant

gives

(19)

where , , , and are given in Appendix C. Since the
phase of at is equal to , we can get

(20)

or

(21)

Thus, is the solution of (21). The plots of functions
and versus are shown in Fig. 6, where

it can be seen that the intersection point gives the value of .
Therefore, the region enclosed by the stability boundary locus
for and is the stability region which is the
shaded region shown in Fig. 7.
In order to plot the stability region for specified gain and

phase margin, a gain-phase margin tester [41] is

Fig. 7. Stability region of the closed-loop system.

connected in the feedforward path. Here, is the gain margin
of the system if , and is the phase margin of the system
if . The closed-loop characteristic polynomial with the
gain-phase margin tester will be

(22)

Solving the equation , it can be found that

(23)

(24)

with

(25)

Setting and in (23) and (24), the stability boundary
locus for gain margin of 2 (6 dB) is plotted in Fig. 8, which is
indicated by the blue line. Setting and in (23)
and (24), the stability boundary locus for phase margin of 60
is plotted by the red line. Thus, the region enclosed by these
two stability boundary locus is the stability region, in which the
gain margin is greater than 6 dB and the phase margin is greater
than 60 . The proportional and integral gains are respectively
selected as 0.3 and 2800, which are tuned by the trial and error
method in the stability region. The operating point is shown in
Fig. 8.

IV. EXPERIMENTAL RESULTS
Here, the aforementioned control strategy will be imple-

mented for verification using the experimental setup shown in
Fig. 1.

A. Bandwidth Test
Bandwidth is an important characteristic for a positioning

system. It defines how fast a system response to the input signal
is. The crossover frequency at 3 dB of the complementary sen-
sitivity transfer function is commonly used as a measurement of
bandwidth. In the experiment, a band-limit white noise signal is
used to test the bandwidth of the developed PI and
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Fig. 8. Stability region of the closed-loop system for specified gain and phase
margins.

Fig. 9. Bandwidth measurement of the PI and controllers.

controllers. The control gains and for
the PI control are determined by the trial-and-error method to
obtain a satisfied tracking performance, while and

are utilized for the control, as described in
Section III. The magnitude plot of the closed-loop systems with
PI and control are shown in Fig. 9. It can be seen that
the crossover frequency with the control is 710 Hz,
while the one with PI control is 168 Hz. The results demonstrate
that with the control, the bandwidth of the system is
increased by 4.23 times compared with the PI control.
In addition, the responses to the 1.5- m step input with the

PI and controllers are shown in Fig. 10, using the
same control gains and as those in the bandwidth test. It
can be observed that under PI control, the output exhibits slight
oscillations, and converges slowly with a 1.5-ms rising time and
2.91-ms settling time. In contrast, with the control,
the output converges quickly with a 0.84-ms rising time and
1.80-ms settling time. These results clearly demonstrate the ef-
fectiveness of the control in terms of the speed.

B. Trajectory Tracking

Here, the triangular trajectories with fundamental frequen-
cies from 1 to 250 Hz are used to evaluate the tracking per-

Fig. 10. Step responses of the PI and controllers.

formance of the proposed control method. First, a performance
index is chosen for a quantitative comparison. When discussing
the tracking performance in SPM applications, perfectly de-
layed tracking is better than imperfect timely tracking if we
know the delay well. According to the reference [43], the fol-
lowing two performance indexes shall be used in this work for
the comparative study:

(26)

(27)

where and represent the maximum error and the root
mean square error, respectively, is the period of the reference
signal, is the controller sampling period, is the
actual position, is the desired reference, is the
shifted reference, and the variable is defined as

(28)

where is a variable defined on .
As an illustration, Fig. 11 shows a comparison of the tracking

performance with PI and control for a 100-Hz trian-
gular wave. The blue dashed lines indicate the reference posi-
tion, the red solid lines represent the actual position, while the
black dashed–dotted line denotes the shifted reference. The dif-
ference between the reference and the shifted reference is only
a time delay. From the figure, it can be seen that the tracking
performance of control is significantly better than
PI control. This is further evidenced in Fig. 12, which shows
comparisons of tracking errors with PI and control
under triangular trajectories with different input frequencies. It
should be noted that the tracking-lag is not included in the error
calculation as this can be eliminated in practical applications by
a phase-lead in either the applied reference, or the recorded data
[22]. If real-time elimination of tracking-lag is required, an ad-
ditional feedforward controller can be adopted [17], [25].
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Fig. 11. Tracking results of the PI and controllers under a 100-Hz
triangular trajectory.

From Fig. 12, it can be found that, with the increase of
input frequencies, the tracking performance of the PI control
is severely degraded, while the control exhibits
a much better performance. For a quantitative comparison,
Table I shows the tracking errors of the PI and
controllers under the triangular trajectories with different fre-
quencies. It can be observed that the maximum error and
the root mean square error of the control are
reduced by 78.30% and 55.13%, respectively, as compared
with those of the PI control at 100 Hz. It is known that a
triangular waveform can be well approximated by its first four
odd harmonics (i.e., first, third, fifth, and seventh). The band-
width of the closed-loop system with the control is
710 Hz. Thus, the piezo-actuated nanopositioning stage with
this controller can accurately track triangular trajectory up to
100 Hz, and its tracking performance would degrade severely
when the input frequency is higher. These theoretic results
are verified by the experimental results shown in Fig. 12 and
Table I. It can be seen that, as the input frequencies increase,
the tracking errors of the control slowly increase.

Fig. 12. Comparison of tracking errors of the PI and controllers
under triangular trajectories with fundamental frequencies of (a) 1 Hz,
(b) 10 Hz, (c) 50 Hz, (d) 100 Hz, (e) 150 Hz, (f) 200 Hz, and (g) 250 Hz.

TABLE I
TRACKING ERRORS OF THE PI AND CONTROLLERS UNDER

TRIANGULAR TRAJECTORIES WITH DIFFERENT FUNDAMENTAL FREQUENCIES

When the input frequencies are below 100 Hz, the and
of the control remain below 1.86% and 1.08%

and exceed 2% and 1%, respectively, as the input frequencies
are over 100 Hz. Hence, it can be concluded that, with the

control, the piezo-actuated nanopositioning stage
can accurately track triangular trajectory up to 100 Hz.
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Fig. 13. Hysteresis compensation results at 1 Hz and 100 Hz triangular excita-
tion with different control strategies: (a), (b) open-loop case; (c), (d) PI control;
(e), (f) control.

C. Reduction of Hysteresis
To demonstrate the effectiveness of the hysteresis reduc-

tion using the proposed control approach, an experiment is
performed in this section. In Fig. 13(a) and (b), the hysteresis
effect of the stage at open-loop case is presented for the 1- and
100-Hz triangular trajectories, respectively, and are compared
with the results of PI control [see Fig. 13(c) and (d)], and

control [see Fig. 13(e) and (f)]. The reduction of
hysteresis effect using the control over the open-loop
case and the PI control is tabulated in Table II. The hysteresis
effect is measured by the hysteresis width, which is defined as

, where denotes the maximum width in the
hysteresis loop along the vertical axis, and defined in the
form of . In the case of 100 Hz, the width
of the hysteresis loop is about 1.4249% using the
control, 21.7859% using the open-loop control, and 3.6391%
using the PI control. The reduction of the hysteresis effect
using the control is about 93.46% and 60.84% in
comparison to the open loop and the PI control, respectively.
The results demonstrate the effectiveness of the proposed

control against the hysteresis effect.

D. Robustness Test
Here, the robustness of the developed control is

test under variation in resonance frequency. For the platform
described in Fig. 1, the resonance frequency is 1616 Hz when
unloaded. With a commonly used load, the resonance frequency
reduces to 1415 Hz. The open-loop frequency responses under

TABLE II
HYSTERESIS EFFECT COMPENSATION WITH DIFFERENT CONTROL STRATEGIES

Fig. 14. Open-loop and closed-loop magnitude frequency responses from
to with variation in resonance frequency.

these two conditions are plotted in Fig. 14. The closed-loop fre-
quency responses with the same controller are also
shown in Fig. 14. From the figure, it can be seen that the pro-
posed controller remains stable and provides good performance.
The bandwidth of the closed-loop system is reduced from 710
to 552 Hz when the platform is loaded. Simulation test indicates
that as the resonance frequency decreases, the bandwidth of the
closed-loop system slowly degrades. The lowest allowable res-
onance frequency to keep the system stable is 1000 Hz.

V. CONCLUSION
In this paper, a high-bandwidth control method for piezo-ac-

tuated nanopositioning stages is proposed. The control structure
is composed of two nested feedback loops. In the inner loop,
the delayed position feedback controller is proposed to damp
the resonant mode of the dynamic system. To realize the pole
placement of the inner-loop system, a generalized Runge–Kutta
method is utilized to calculate the rightmost characteristic root
by constructing the Floquet transition matrix. Then, an opti-
mization is used to place the rightmost characteristic root to the
desired place in the left half plane to impart sufficient damping
in the closed-loop system. The outer loop is a high-gain PI
tracking controller, which is used to maximize the closed-loop
bandwidth and reduce the errors caused by the dynamics and
nonlinearities. The stability of the overall control system is ana-
lyzed and discussed by a graphical method, in which the sta-
bility boundary locus is plotted in the parameter plane. The
gain margin and phase margin can be obtained from the sta-
bility boundary locus. Finally, experiments are performed on a
piezo-actuated nanopositioning stage to verify the effectiveness
of the proposed control method. Compared with the standard PI
tracking controller, the combination of PI and DPF controller
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achieved an increase in the closed-loop bandwidth from 168 to
710 Hz, a reduction in hysteresis effect by 60.84% at the case of
100 Hz and an improvement in triangular tracking by 78.30%
in terms of the maximum error.

APPENDIX A
The Floquet transition matrix in (10) for the system in (7)

using the GRKM was developed in our previous study [38],
[39]. Here, we briefly summarize the derivation of the Floquet
transition matrix.
First, in order to approximate the DDEwith a series of ODEs,

the time delay should be equally divided into intervals. The
span of each interval is written as , i.e., . Based on
the Volterra integral equation of the second kind, the analytical
solution of (7) is deduced as

(29)

where denotes the initial value at starting time . On ar-
bitrary interval , we have

(30)

To simplify the derivation process, the following symbols are
introduced:

(31)

and

(32)

Suppose the initial value is , where
is an integer regarding the discretization number

(33)

where is a function that rounds positive numbers to plus
infinity (e.g., ).
If is known, can be obtained with the Simpson's

rule on as

(34)

By introducing the middle point value , is cal-
culated with the classical fourth-order Runge-Kutta method

(35)

Based on the barycentric three-point Lagrange interpolation
formula, the middle point value is expressed as

(36)

Substituting (36) into (35) yields

(37)

Based on (34) and (37), the general iterative expressions (38)
and (39) are obtained. Abbreviate as for con-
ciseness. The odd term is written as

(38)

where , ,
,

, .
The even term is written as

(39)

where , , ,
, , and .

Based on (38) and (39), the expression of the discrete map
(40), shown at the top of the following page, is obtained.
Then, according to (40), the Floquet transition matrix is de-

duced as

(43)

where denotes the inverse of matrix . The dimension of
matrix is the same with , i.e., , thus the
dimension of the Floquet transition matrix is also

.

APPENDIX B
The tracking gains and in (17) and (18) are derived here.

Substituting into (16), the characteristic polynomial can
be written as

(44)

Letting , (44) becomes

(45)

where and are the real and imaginary parts of ,
respectively, which are expressed as

(46)
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(40)
where

...
...

...
...

...
. . .

...
...

...

(41)

...
...

...
...

...
. . .

...
...

...

(42)

Then, the equation is equivalent to the real and
imaginary parts of to zeros, i.e., , .
Considering and as parameters, we have

(47)

and

(48)

Let

(49)

and

(50)

Then, (47) and (48) can be written as

(51)

From these equations, we can obtain

(52)

(53)

Substituting (49) into (52) and (53), we can get

(54)

(55)

APPENDIX C
The expressions of , , and are given as follows:

(56)
(57)

(58)

(59)
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