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A B S T R A C T

This paper presents a modified generalized Prandtl–Ishlinskii (MGPI) model for the asymmetric hysteresis
characterization of pneumatic artificial muscles (PAMs), which can be considered as a cascade of the super-
position of weighted generalized play operators and the superposition of weighted dead-zone operators.
Compared with the established hysteresis models, the significance of the MGPI model is that it has a simple
expression including a small number of parameters to be identified. Besides, the analytical form of its inverse
model is easy to be obtained, which can be applied to the compensation of asymmetric hysteresis of the PAM in
real-time. The wiping-out and congruency properties of the proposed model are verified by simulations.
Meanwhile, by carrying out the experimental study on length–pressure hysteresis of a PAM, the parameters in
the MGPI model are identified from measured data using the Levenberg–Marquardt method. Then, a feedforward
hysteresis compensator based on the inverse MGPI model is designed for trajectory tracking control of the PAM.
The simulation and experimental results indicate that the proposed model and its inversion are effective to
characterize and compensate the length–pressure hysteresis of the PAM.

1. Introduction

Hysteresis is a common nonlinear phenomenon that appears in
various systems, including smart materials [1], ferromagnetic materials
[2] and pneumatic artificial muscles (PAMs) [3]. The hysteresis prop-
erties can cause inaccuracies and oscillations in the system responses
[4], yielding degraded performance of the system. Significant efforts
have been made toward the modeling of hysteresis properties for ef-
fective controller designs.

The existing models characterized the hysteresis can be classified
into physics-based models and phenomenology-based models. The
physics-based models [5] are usually derived on the basis of physical
principles of the particular material and/or system properties. In con-
trast, the phenomenological hysteresis models are constructed based on
the experimental data without considering the physical properties of
the actuator, and thus have been adopted more extensively. The phe-
nomenology-based models can be roughly divided into two classes [6]:
(1) operator-based models, which utilizes different kinds of mathema-
tical operators to characterize the hysteresis loops, such as Preisach
model [7], Krasnosel'skii–Pokrovskii (KP) model [8], Prandtl–Ishlinskii
(PI) model [9], Maxwell-slip model [10] and its modified version [11];

(2) differential-based models, which adopts nonlinear differential
equations to characterize hysteresis dynamics [12], such as Dahl model
[13], LuGre model [14], Duhem model [15,16], Bouc–Wen model [17]
and its variations [18].

As a subclass of the Preisach model, the PI model [19], which is a
linearly weighted superposition of elementary linear play operators
with different thresholds and weighting values, is the most widely used
model in both hysteresis modeling and control. Compared with other
models, the main advantage of the PI model lies in its simple expression
and analytical inversion, thus making it more efficient for real-time
applications. However, the classical PI (CPI) model is not adequate to
describe the nonlinear and saturated hysteresis loops [20] because the
linear play operator is symmetric and convex. In an attempt to over-
come these drawbacks of the CPI model, a lot of variations of the PI
model have been proposed by: (1) cascading linear play operators with
continuous non-convex and asymmetric memory-free superposition
operators in series [21]; (2) replacing the linear play operators with
nonlinear ones; and (3) adding nonlinear memoryless function [22] (or
nonlinear input function [23]). Kuhnen [21] proposed a modified PI
(MPI) model that combines linear play operators with one-sided dead-
zone operators (DZOs) to model the asymmetric hysteresis. Along this
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track, Wei et al. [24] developed a rate-dependent MPI model to take
account of the hysteretic nonlinearity of a piezoelectric actuator at
varying frequency. Al Janaideh et al. [25] applied a symmetric gen-
eralized PI (SGPI) model to characterize the symmetric and saturated
hysteresis loops. To improve the capability of the SGPI model in cap-
turing the asymmetric hysteresis loops, an enhanced SGPI, named
asymmetric GPI (AGPI) model, was proposed by adopting different
envelope functions under increasing and decreasing inputs, which is
more effective in describing the complex asymmetric hysteresis with
output saturation compared to the SGPI model [26]. Subsequently, the
analytical inversion of the AGPI model was further derived in [27].
Meanwhile, based on the CPI model, Jiang et al. [28] modeled the
hysteresis nonlinearity of piezoelectric actuators by proposing two
asymmetric operators to describe the ascending and descending bran-
ches of the hysteresis independently. The AGPI model [27] can capture
asymmetric hysteresis with output saturation, and it has an analytical
inversion as long as the envelope functions of all the generalized play
operators are in the same form [22]. However, the same form of en-
velope functions in AGPI model limits its modeling capability [29].
Hence, Zhang et al. [22] formulated an extended generalized PI (EGPI)
model by adding a nonlinear memoryless function into the AGPI model,
and presented an iterative inversion algorithm based on the Fixed-Point
Theorem to derive its inversion. The result indicates that the EGPI
model has better capability to describe complex hysteresis than the
AGPI model. Moreover, Gu et al. [30] combined a CPI model with a
nonlinear non-hysteretic function of the input to capture the asym-
metric hysteresis of piezoceramic actuators. However, the proposed
model is not suitable for PAMs due to the convexity property [21] of the
PI model.

In this paper, a novel modified generalized PI (MGPI) model com-
bining the SGPI with MPI models is formulated to identify the asym-
metric hysteresis of PAMs. The main advantages of the proposed MGPI
model lie in that: (1) rather than the different envelope functions used
in AGPI and EGPI models, the hysteresis envelope functions of this
model are the same as those of the SGPI model, thus it has a simple
mathematical expression to describe the asymmetric hysteresis beha-
vior of PAMs; (2) due to (1), the MGPI model has a relative fewer
parameters to be identified compared with MPI model; (3) the analy-
tical inverse of the MGPI model can be directly derived from that of the
SGPI and MPI models. To validate the developed model and the inverse
hysteresis compensator, the results of simulation and experiment on a
PAM are presented.

The rest of this paper is organized as follows. Section 2 presents the
MGPI model and its analytical inversion. The verification of wiping-out
and congruency properties of the developed MGPI model is given in
Section 3. Finally, an inverse-based hysteresis compensator for trajec-
tory tracking control of the PAM is designed in Section 4 to validate the
capacity of the proposed model before conclusions are drawn in
Section 5.

2. MGPI model

The analytical formulations of the MGPI model and its inverse
model are presented in this section. The former is used to characterize
the asymmetric length–pressure hysteresis, while the latter is applied as
a feedforward compensator for trajectory tracking control.

2.1. AGPI model

The AGPI model [26,27] is an operator-based phenomenological
model, which utilizes the weighted generalized play operators (GPOs)
to describe the nonlinear and saturated hysteresis nonlinearity. The
input–output relationship of a GPO is shown in Fig. 1, which is char-
acterized by the input x and the thresholds ζr and ζl. The increase of
input x causes the output w increasing along the curve γr, while the
decrease of x causes w decreasing along the curve γl, resulting in a

asymmetric hysteresis loop. The curves γl and γr are the envelop func-
tions of GPO, which are strictly continuous and increasing, satisfying
γl≥ γr [25].

Suppose that Cm[0, T] is the space of piecewise monotone con-
tinuous functions. According to the definition presented in [31], the
output of the GPO, denoted by Fr

γ , for any input x(t)∈ Cm[0, T] can be
formulated as
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The AGPI model can be subsequently formulated by integrating the
GPO and the density function p(r), yielding
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where p(r) is an integrable positive density function; H is the non-de-
creasing Lipschitz continuous function.
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To implement the real-time control, the AGPI model (4) can also be
approximately expressed in the form of a finite number of the GPOs
[26], resulting in
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where n is the number of GPOs; q is a positive constant;
= ⋯y y y[ , , ]n0 10 0

T is the initial state. The threshold value ri and the
weight of the ith operator pi can be given as

=r αii (9)

Fig. 1. Input–output relationship of the generalized play operator.
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= = −p p r ρe( )i i
τri (10)

where α, ρ and τ are positive constants identified from experimental
data of the PAM.
Remark. The AGPI model [26] utilizes different nonlinear envelope
functions to approach the asymmetric hysteresis loops, i.e. γl(x)≠ γr(x),
for the ascending and descending branches. Therefore, it can
characterize the asymmetric and saturated hysteresis loops. As a
special case of the AGPI model, the SGPI model [25] employs the
same envelope functions, i.e. = =γ x γ x γ( ) ( )l r . Although it has
limitation on describing the asymmetric hysteresis [25], the
formulation of this model is simple.

2.2. MGPI model

Taking advantage of the SGPI model and the MPI model, a novel
MGPI model is proposed in this paper for the description of the asym-
metric hysteresis behavior of PAMs. The SGPI model is utilized to re-
duce the complexity of modeling, while the capability of characterizing
the asymmetric hysteresis is enhanced by cascading the one-side dead-
zone operators.

According to [25], the envelop function is given by

= + +γ x t c c x k c c( ( )) tanh[ ( ) ]0 1 2 3 (11)

where c0> 0, c1> 0, c2, c3 are constants to be identified. Then, the
proposed MGPI model can be derived as the cascade of superposition of
weighted GPOs and superposition of weighted dead-zone operators
(DZOs). For different threshold values, Fig. 2 shows the input–output
relationship of the DZOs, which can be defined as [21]
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Thus, the output of dead-zone (DZ) model can be expressed as fol-
lows
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where yS(k) is the output of DZ model; ws, Sd[y](k) and d are the vectors
of weights, DZOs and thresholds, respectively. The element in d is de-
fined as

=d
j

m
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Thus, by using a finite number of the GPOs and DZOs, the MGPI
model can be derived
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It is notable that the MGPI model is different from the variations of
the CPI models [19], such as the AGPI model and EGPI model. To
overcome the drawback of the CPI model that can only describe the
symmetric hysteresis, the AGPI model proposed in [26] and [27]
modified the GPOs by using two different envelope functions. While the
EGPI models developed in [22] and [29] replaced the function H(x(t))
by a new nonlinear function. By contrast, the MGPI model combines the
GPOs of the SGPI model with the superposition of dead-zone operators
(Fig. 3). In this manner, the developed model has a simple mathema-
tical expression using fewer parameters to characterize the asymmetric
hysteresis behavior. Another advantage is that the analytical inversion
of the MGPI model can be directly derived from that of the CGPI model
and MPI model for the real-time feedforward hysteresis compensation,
which will be investigated in Section 4.

2.3. Inverse MGPI model

Referring to [21,25], the inverse MGPI model can be obtained from
that of the SGPI model and MPI model, which can be formulated as

= = ′ ′ ′−Γ w Sx k y k y y k( ) [ ]( ) [ [ ]]( )P s
T

d
1 (17)

where

Fig. 2. Input–output relationship of the dead-zone operator. Fig. 3. Structure of MGPI model.
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Here, xi(k) is the ith inverse generalized linear play operator; ′ri and
′pi are the threshold and weight of the inverse GPI model, respectively.

3. Verification of wiping-out and congruency properties

Although the MPI model can capture the asymmetric hysteresis
loops, the wiping-out and congruency properties of this model are not
verified in [21]. Since these two properties are essential for validating
the effectiveness of operator-based hysteresis models [32], the corre-
sponding simulations on the proposed MGPI model are carried out in
this section.

3.1. Wiping-out property

The wiping-out property means that the output of hysteresis loops
depends on not only the current input but also the alternating series of
previous dominant input extrema. As a nonlocal memoryless behavior
of the hysteresis, only the alternating series of previous dominant input
extrema are stored, and the memories of all the other inputs are wiped
out.

Fig. 4(a) illustrates the input pressure signal, which is given to
verify the wiping-out property. There are two local minimal values (p2

and p4), two local maximal values (p1 and p3) and one global maximal
value (p5). Fig. 4(b) shows the hysteresis loops generated by the given
input pressure. When the input signal decreases from p3 to p4, the
hysteresis loop moves from point L3 to point L4. Since the value p4 is
smaller than that of p2, the memory point L2 is wiped out by the
memory point L4. When the input increases from p4 to p5, due to
p5> p1> p3, the memory points L1 and L3 are both wiped out by the
new memory point L5. The simulation results indicate that the MGPI
model successfully fulfills the wiping-out property.

3.2. Congruency property

The congruency property refers to the characteristic that two minor
hysteresis loops with the same input range are congruent. It means that
one minor loop can overlap the other by pure translation.

The input pressure signal for the validation of congruency property
is shown in Fig. 5(a). There are two local minimal values (p2 and p4)
and two local maximal values (p1 and p3), satisfying =p p5 1 and

=p p2 4. Thus, we have =p p p p[ , ] [ , ]2 1 4 5 . Fig. 5(b) is the corresponding
hysteresis loops. There are two minor hysteresis loops, namely, loop 1
and loop 2. The lower minor hysteresis loop 1 is obtained from the
input pressure between p1 to p2 in the ascending branch, and the upper
loop2 is caused by the input pressure between p4 to p5 in the descending
branch. Obviously, these two minor loops can overlap each other ex-
actly after shifting a distance, which demonstrates that the two minor
loops are congruent.

4. Experimental verification

In this section, the experiment on the length–pressure hysteresis of a
PAM is conducted. By using the Levenberg–Marquardt method, the
parameters in the MGPI model are identified from the experimental
data. Then, an inverse-based compensator for trajectory tracking con-
trol of the PAM is designed to demonstrate the effectiveness of the
model.

4.1. Experimental apparatus

The experimental apparatus is shown in Fig. 6, which consists of a
PAM, a VPPM valve, an air compressor, a displacement sensor, a
pressure sensor and a computer. The PAM is DMSP-20-500 N fluidic
muscle (internal diameter: 20mm; length: 500mm) manufactured by
Festo, of which one extremity is connected with the base and the other
moves freely. The length and the internal pressure of the PAM are

Fig. 4. Simulation of the wiping-out property. (a) Input pressure. (b) Hysteresis loops.
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measured by a displacement sensor (Novetechnik TEX-0150) and a
pressure transducer (FESTO SDE1-D10), respectively. A proportional
pressure regulator (Festo VPPM-6L-L-1-G18-0L10H) is equipped to
regulate the required pressure for the PAM. Fig. 7 shows the schematic
diagram of the experimental setup, where a NI data acquisition board
6230 is embedded in the computer and the control algorithm are de-
veloped using the graphical programming platform of LabVIEW.

4.2. Hysteresis loops characterization

Before the experimental verification of the proposed MGPI model,
the parameters identification is necessary. However, parameters iden-
tification of the MGPI model is by no means an easy task, due to the
high-dimensional, high-nonlinear and multi-constraint characteristics.
There are many algorithms having been developed to solve the problem
of parameter identification of hysteresis models, such as the particle
swarm optimization [33], genetic algorithm [34], covariance matrix

Fig. 5. Simulation of the congruency property. (a) Input pressure. (b) Hysteresis loops.

Fig. 6. Experimental apparatus.

Fig. 7. Schematic diagram of the experimental setup.

Table 1
Identified parameters of the GPI model.

c0 c1 c2 c3

1.6867 0.3385 −0.2319 0.3211
Q ρ τ α
0.2959 0.1827 5.4999 0.08

Table 2
Identified parameters of the DZ model.

Number wi Number wi

1 0.1207 6 −0.0238
2 0.0246 7 −0.0070
3 0.0405 8 −0.0401
4 0.0694 9 −0.0223
5 0.0357 10 0.0625

Table 3
Comparison of different models with different n.

n Models ME/mm MAE/mm RMSE/mm

10 MGPI 3.0506 0.6116 0.8518
SGPI 5.2507 1.0725 1.3726

20 MGPI 2.9791 0.5798 0.8061
SGPI 5.3458 1.061 1.3636

Table 4
Comparison of MGPI model with different m.

m ME/mm MAE/mm RMSE/mm

10 3.0506 0.6116 0.8518
14 3.4331 0.5828 0.8136
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Fig. 8. Experimental verification of the MGPI model. (a) Input pressure. (b) Hysteresis loops. (c) Length of PAM. (d) Error.

Fig. 9. Experimental verification of the AGPI model. (a) Hysteresis loops. (b) Error.
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adaptation evolution strategy [35]. In this paper, the Le-
venberg–Marquardt method [36] is adopted to identify the parameters
in the MGPI model by minimizing the following quadratic cost function.

∑= = −
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where =Θ Θ Θ[ ; ]g d is the vector of parameters to be identified; Θg and
Θd are the parameters in the GPI model and DZ model, respectively; x
and y are input and output data obtained from the experiment; N is the
number of x; E(Θ) is the error vector; yM is the output of the MGPI
model.

The identified parameters of the MGPI model (16) using ten GPOs
(n=10) and ten DZOs (m=10) are summarized in Tables 1 and 2. It
should be pointed out that the larger the numbers of n and m, the higher
the precision of the MGPI model to capture the hysteresis loops.
However, it is found that further increase of the numbers of GPOs and
DZOs does not improve the modeling accuracy significantly, which can
be seen from Tables 3 and 4. These conclusions are consistent with the
results obtained in [21] and [30].

By using the identified parameters, it is easy to carry out the com-
parison study between the experimental data of length- pressure hys-
teresis loops of the PAM and the prediction results of the MGPI model.
The reference pressure signal is designed in the form of triangle-wave as
shown in Fig. 8(a). Its amplitude decreases from 0.6MPa to 0.1 Mpa
with an equal interval of 0.1 MPa. Fig. 8(b) illustrates the

length–pressure hysteresis loops obtained from the MGPI model and
experimental data. It can be seen that the proposed model is very ef-
fective in characterizing both major and minor hysteresis loops of the
PAM. Fig. 8(c) shows that the prediction results of the MGPI model
match the experimental measurements very well. The maximal error is
3.0506mm in the full range of movement (see Fig. 8(d) and Table 3).

To demonstrate the advantage of the proposed MGPI model, the
SGPI model is also developed to describe the length–pressure hysteresis
of the PAM under the same input pressure signal, resulting in the
hysteresis loops depicted in Fig. 9. It can be seen that the error of the
SGPI model is larger than that of the MGPI model, indicating that the
proposed model has a better capability of characterizing the asym-
metric length–pressure hysteresis behavior of PAMs.

4.3. Hysteresis nonlinearity compensation

To compensate the length–pressure hysteresis, a feedforward and
feedback combined control strategy is proposed to realize high accurate
trajectory tracking control of the PAM. Given the identified parameters
of the MGPI model, the inverse MGPI model can be obtained using
(17)–(21), which can be cascaded with the control system as a feed-
forward hysteresis compensator. The inverse MGPI model maps the
desired trajectory yd into an actual control input Pd applied on the
proportional pressure regulator. Hence, the relationship between the
desired trajectory yd and actual length yr can be linearized. Note that
the accuracy of the hysteresis model affects the performance of the
feedforward controller. Therefore, a feedback loop has to be added to
form a feedforward and feedback combined controller. The control
scheme is illustrated in Fig. 10. A conventional PID controller is placed
in the feedback loop, which has the form

∫= + +P K e t K e τ dτ K
de t

dt
Δ ( ) ( ) ( )

p i
t

d0 (24)

Fig. 10. Block diagram of the controlled system.

Fig. 11. Demonstration of the inverse hysteresis compensation performance. (a) Trajectory tracking response. (b) Error.
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where e(t) is the tracking error signal; ΔP is output of PID controller; Kp,
Ki and Kd are proportional, integral and derivative gains, respectively,
which are given as =K 0.05p , =K 0.01i and =K 0p .

The tracking responses and errors of the proposed control scheme
are shown in Fig. 11. The corresponding length–pressure hysteresis
loops of the PAM are demonstrated in Fig. 12. Table 5 lists the statistics
of the trajectory tracking error. It can be found that the maximal error is
2.738mm, and the mean absolute error is only 0.7153mm. The ex-
perimental results show that the inverse MGPI model is effective to
compensate for the asymmetric length–pressure hysteresis in real-time
application. This conclusion can also be drawn from the nearly linear
relationship between the desired and the actual lengths of the PAM
after compensation, as shown in Fig. 13.

5. Conclusion

To precisely characterize the asymmetric hysteresis nonlinearity of
the PAM, a MGPI model is proposed in this paper. The following con-
clusions are drawn.

(1) The proposed MGPI model can be considered as a cascade of the
superposition of weighted generalized play operators and the su-
perposition of weighted dead-zone operators. Referring to the in-
versions of the SGPI and MPI models, the analytical form of the
inverse MGPI model can be easily derived, which is readily avail-
able for hysteresis compensation.

(2) The wiping-out and congruency properties of the proposed model
are testified by simulations. The results show that the MGPI model
successfully fulfills both properties.

(3) The results of experimental verification indicate that the MGPI
model has a better capability of describing the length–pressure
hysteresis of PAMs compared with the SGPI model, and its inversion
is effective for the compensation of the asymmetric hysteresis.

Acknowledgments

This work was supported by National Natural Science Foundation of
China under grant 51405331.

References

[1] Song G, Zhao J, Zhou X, et al. Tracking control of a piezoceramic actuator with
hysteresis compensation using inverse Preisach model. IEEE/ASME Trans
Mechatron 2005;10(2):198–209.

[2] Tan XB, Baras JS. Modeling and control of hysteresis in magnetostrictive actuators.
IEEE Control Syst 2004;40(9):1469–80.

[3] Aschemann H, Schindele D. Comparison of model-based approaches to the com-
pensation of hysteresis in the force characteristic of pneumatic muscles. IEEE Trans
Ind Electron 2014;61(7):3620–9.

[4] Minh TV, Tjahjowidodo T, Ramon H, et al. Cascade position control of a single
pneumatic artificial muscle–mass system with hysteresis compensation.
Mechatronics 2010;20(3):402–14.

[5] Harrison RG. A physical model of spin ferromagnetism. IEEE Trans Magn
2003;39(2):950–60.

[6] Hassani V, Tjahjowidodo T, Do TN. A survey on hysteresis modeling, identification
and control. Mech Syst Sig Process 2014;49(1–2):209–33.

[7] Tan XB, Baras JS. Adaptive identification and control of hysteresis in smart mate-
rials. IEEE Trans Autom Control 2005;50(6):827–39.

[8] Zhou M, He S, Hu B, et al. Modified KP model for hysteresis of magnetic shape
memory alloy actuator. IETE Tech Rev 2014;32(1):29–36.

[9] Xie SL, Mei JP, Liu HT, et al. Motion control of pneumatic muscle actuator using fast
switching valve. Proceedings of ASIAN MMS 2016 & CCMMS 2016. 2017. p.
1439–51.

[10] Vo-Minh T, Tjahjowidodo T, Ramon H, et al. A new approach to modeling hysteresis
in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Trans
Mechatron 2011;16(1):177–86.

[11] Yeh TJ, Wu MJ, Lu TJ, et al. Control of McKibben pneumatic muscles for a power-
assist, lower-limb orthosis. Mechatronics 2010;20(6):686–97.

[12] Lin CJ, Lin CR, Yu SK, et al. Hysteresis modeling and tracking control for a dual
pneumatic artificial muscle system using Prandtl–Ishlinskii model. Mechatronics
2015;28:35–45.

[13] Bastien J, Michon G, Manin L, et al. An analysis of the modified Dahl and Masing
models: application to a belt tensioner. J Sound Vib 2007;302(4):841–64.

[14] Swevers J, Al-Bender F, Ganseman CG, et al. An integrated friction model structure
with improved presliding behavior for accurate friction compensation. IEEE Trans
Autom Control 2000;45(4):675–86.

[15] Oh JH, Bernstein DS. Semilinear Duhem model for rate-independent and rate-de-
pendent hysteresis. IEEE Trans Autom Control 2005;50(5):631–45.

[16] Lin CJ, Lin PT. Tracking control of a biaxial piezo-actuated positioning stage using
generalized Duhem model. Comput Math Appl 2012;64(5):766–87.

[17] Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Arch
Comput Methods Eng 2009;16(2):161–88.

[18] Kiureghian AD, Song J. Generalized Bouc-Wen model for highly asymmetric hys-
teresis. J Eng Mech 2006;132(6):610–8.

[19] Kuhnen K, Janocha H. Inverse feedforward controller for complex hysteretic non-
linearities in smart-material systems. Control Intell Syst 2001;29(3):74–83.

[20] Zhang J, Merced E, Sepúlveda N, et al. Optimal compression of generalized Prandtl-
Ishlinskii hysteresis models. Automatica 2015;57(C):170–9.

[21] Kuhnen K. Modeling, identification and compensation of complex hysteretic non-
linearities: a modified Prandtl-Ishlinskii approach. Eur J Control 2003;9(4):407–18.

[22] Zhang J, Merced E, Sepulveda N, et al. Inversion of an extended generalized

Fig. 12. Demonstration of the length–pressure hysteresis loops of PAM.

Table 5
Trajectory tracking errors.

ME/mm MAE/mm RMSE/mm

2.738 0.7153 0.8975

Fig. 13. Relationship between the desired length and the actual length after
compensation.

S.-L. Xie et al. Mechatronics 52 (2018) 49–57

56

http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0008
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0008
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0012
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0012
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0012
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0021
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0021
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0022


Prandtl-Ishlinskii hysteresis model: theory and experimental results. Proceedings of
American Control Conference (ACC), 2014. 2014. p. 4765–70.

[23] Gu GY, Yang MJ, Zhu LM. Real-time inverse hysteresis compensation of piezo-
electric actuators with a modified Prandtl-Ishlinskii model. Rev Sci Instrum
2012;83(6):65–83.

[24] Wei TA, Khosla PK, Riviere CN. Feedforward controller with inverse rate-dependent
model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME
Trans Mechatron 2007;12(2):134–42.

[25] Al Janaideh M, Mao J, Rakheja S, et al. Generalized Prandtl-Ishlinskii hysteresis
model: hysteresis modeling and its inverse for compensation in smart actuators.
47th IEEE Conference on Decision and Control. 2008. p. 5182–7.

[26] Janaideh MA, Rakheja S, Su CY. A generalized Prandtl-Ishlinskii model for char-
acterizing the hysteresis and saturation nonlinearities of smart actuators. Smart
Mater Struct 2009;18(4):045001.

[27] Janaideh MA, Rakheja S, Su CY. An Analytical generalized Prandtl–Ishlinskii model
inversion for hysteresis compensation in micropositioning control. IEEE/ASME
Trans Mechatron 2011;16(4):734–44.

[28] Jiang H, Ji H, Qiu J, et al. A modified Prandtl-Ishlinskii model for modeling
asymmetric hysteresis of piezoelectric actuators. IEEE Trans Ultrason Ferroelectr
Freq Control 2010;57(5):1200–10.

[29] Zhang J, Merced E, Sepúlveda N, et al. Modeling and inverse compensation of
hysteresis in vanadium dioxide using an extended generalized Prandtl–Ishlinskii
model. Smart Mater Struct 2014;23(12):125017.

[30] Gu GY, Zhu LM, Su CY. Modeling and compensation of asymmetric hysteresis
nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model.
IEEE Trans Ind Electron 2014;61(3):1583–95.

[31] Visintin A. Differential models of hysteresis. Berlin, Germany: Springer-Verlag;
1994.

[32] Liu S, Su CY. A note on the properties of a generalized Prandtl-Ishlinskii model.
Smart Mater Struct 2011;20(8):087003.

[33] Yang MJ, Gu GY, Zhu LM. Parameter identification of the generalized
Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm
optimization. Sens Actuators A 2013;189(2):254–65.

[34] Landini G. Hysteresis identification and compensation using a genetic algorithm
with adaptive search space. Mechatronics 2007;17(7):391–402.

[35] Hansen N. The CMA evolution strategy: a comparing review. Stud Fuzziness Soft
Comput 2006;192:75–102.

[36] Wang Y, Handroos H, Carbone G. Modified Levenberg–Marquardt algorithm for
backpropagation neural network training in dynamic model identification of me-
chanical systems. J Dyn Syst Meas Control 2017;139:1–14.

Sheng-Long Xie received both Bachelor and Master de-
grees in mechanical engineering from Anhui University of
Technology, Ma'anshan, China in 2011 and 2014 respec-
tively. He is currently a Ph.D. student at Key Laboratory of
Mechanism Theory and Equipment Design of Ministry of
Education, Tianjin University, China. His research interests
include dynamics of parallel mechanisms and motion con-
trol of pneumatic servo systems.

Hai-Tao Liu received B.S., M.S., and Ph.D. in Mechanical
Engineering from Tianjin University, Tianjin, China, in
2004, 2007, and 2010, respectively. From 2013 to 2014, he
stayed at the Chair of Mechanics and Robotics at University
of Duisburg-Essen with a fellowship from the Alexander von
Humboldt (AvH) Foundation of Germany. Currently he is
professor in School of Mechanical Engineering, Tianjin
University. His research interests include robotics, kine-
matics and dynamics of parallel mechanisms, Lie group and
Lie algebra, screw theory.

Jiang-Ping Mei received his Ph.D. degree from Tianjin
University, Tianjin, China, in 2002. He is currently an as-
sociate professor and a Ph.D. candidate supervisor at Key
Laboratory of Mechanism Theory and Equipment Design of
Ministry of Education, Tianjin University, China. His re-
search interests include manufacturing systems and in-
dustrial robots.

Guo-Ying Gu received the B.E. degree in electronic en-
gineering and the Ph.D. degree in mechanical engineering
from Shanghai Jiao Tong University, Shanghai, China, in
2006 and 2012, respectively. He is currently a Postdoctoral
Research Fellow with the School of Mechanical and Power
Engineering, Shanghai Jiao Tong University. He was a
Visiting Researcher with Concordia University, Montreal,
QC, Canada (from October 2010 to March 2011 and from
November 2011 to March 2012). His research interests in-
clude motion control of nanopositioning stages for scanning
probe microscopy applications, robust control, modeling,
and control of smart material-based actuators with hyster-
esis.

S.-L. Xie et al. Mechatronics 52 (2018) 49–57

57

http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0022
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0022
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0024
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0024
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0024
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0025
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0025
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0025
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0026
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0026
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0026
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0027
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0027
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0027
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0028
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0028
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0028
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0029
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0029
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0029
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0030
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0030
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0030
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0031
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0031
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0032
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0032
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0033
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0033
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0033
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0034
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0034
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0035
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0035
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0036
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0036
http://refhub.elsevier.com/S0957-4158(18)30059-X/sbref0036

	Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl–Ishlinskii model
	Introduction
	MGPI model
	AGPI model
	MGPI model
	Inverse MGPI model

	Verification of wiping-out and congruency properties
	Wiping-out property
	Congruency property

	Experimental verification
	Experimental apparatus
	Hysteresis loops characterization
	Hysteresis nonlinearity compensation

	Conclusion
	Acknowledgments
	References




