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Helical shapes are ubiquitous in both nature and engineering. However, the development of soft

actuators and robots that mimic helical motions has been hindered primarily due to the lack of

efficient modeling approaches that take into account the material anisotropy and the directional

change of the external loading point. In this work, we present a theoretical framework for modeling

controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The frame-

work is based on the minimum potential energy method, and its model predictions are validated by

experiments, where the microarchitectures of the soft composite actuators can be precisely defined

by 3D printing. We use the developed framework to investigate the effects of material and geomet-

ric parameters on helical deformations. The results show that material stiffness, volume fraction,

layer thickness, and fiber orientation can be used to control the helical deformation of a soft actua-

tor. In particular, we found that a critical fiber orientation angle exists at which the twist of the actu-

ator changes the direction. Thus, this work can be of great importance for the design and

fabrication of soft actuators with tailored deformation behavior. Published by AIP Publishing.
https://doi.org/10.1063/1.5025370

Helical shapes are ubiquitous in both nature and engi-

neering where examples can be found at all length scales,

including DNA strands,1 vertebrate guts,2,3 seed pods,4,5

mechanical springs,6 spiral staircases,7 and many others.8–11

In addition, helical shapes have also been exploited as effi-

cient modes of motion and thus adopted by creatures.

Examples include bacteria flagella for locomotion,12–14 plant

tendrils for climbing, elephant trunks for grasping,15 and so

forth.16–18

Inspired by nature, researchers and engineers have made

efforts to design and fabricate soft actuators and robots that

mimic those helical motions and found various applications

in diverse areas such as robotics, biomedicals, and bioengi-

neering. Examples include soft robotic grippers capable of

grasping soft or fragile objects with irregular shapes,19,20

pneumatic twisting actuators for tilting micromirrors,21

active propeller blades and control surfaces on underwater

vehicles exhibiting bending and twisting motions,22 and soft

robotic gloves augmenting hand rehabilitation of patients

with functional grasp pathologies.23 However, further advan-

ces in the design and fabrication of actuators exhibiting heli-

cal motions are hindered mainly due to the lack of efficient

fabrication tools and appropriate modeling approaches.

Although in the past decade several approaches were pro-

posed to fabricate and model helical deformations, most of

them were based on the idea of building internal stresses

within a multilayer structure which only exhibits a one-shot

deformation to a helical shape.24–32 For example, the forma-

tions of general chiral morphologies such as nanohelices in

nanomaterials induced by anisotropic surface stresses have

been studied.32 Yet, these one-shot deformation approaches

are not applicable for actuators and robots that require

reversible and repeatable motions. In contrast, cable-driven

mechanisms ensure repeatable and reversible actuation with

a fast loading rate and large load capacity and are widely

used in the robotics community.33–39 Nevertheless, examples

of cable-driven helical motion actuators are limited as these

actuators were so far mainly made of a single material, mak-

ing it difficult to create anisotropy which results in helical

motion. More importantly, modeling helical motions gener-

ated by cable-driven mechanisms has been elusive due to the

difficulties of tracking and calculating the force exerted to

the actuator from the control cable as the force direction con-

stantly varies during helical bending/twisting.

In this letter, we present a theoretical framework based

on the minimum potential energy method to model the com-

plex helical motions of a suite of 3D printed, anisotropic,

composite actuators that are controlled by a cable-driven

mechanism. We start by designing the composite actuators

as depicted in Fig. 1(a), where a rectangular composite

(L�W � H with L�W � H) consists of an elastomeric

matrix reinforced by a layer of off-centered stiff fibers. As

shown in Fig. 1(b), we parameterize the composite into three

layers: the top and bottom pure elastomeric layers with thick-

nesses h1 and h3, respectively, and the anisotropic middle

layer with thickness h2, which is designed through rotating aa)Email addresses: guguoying@sjtu.edu.cn and ge_qi@sutd.edu.sg
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basic fiber-reinforced composite [Fig. 1(c)] by an orientation

angle /0. In addition, a tiny channel with a distance hc away

from the top edge is designed all through the length direction

for embedding a control cable. We fabricated the composite

actuators using a commercial Polyjet multimaterial 3D

printer (Stratasys, Objet500 Connex 3). During printing, we

embedded the control cable into the tiny channel by inter-

rupting the printing process.40 Based on previous stud-

ies,31,41 the layer-layer interfaces within the composites are

fully bonded due to the strong covalent bonds formed during

photopolymerization. There is no interaction between the

control cable and the inner wall of the channel in the com-

posite, but the cable and the composite are fully bonded at

one end of the composite by superglue. Further details on the

geometric parameters and fabrication process are described

in the supplementary material (S1).

In Fig. 1(d), when subject to a tensile force T, the dis-

placement Dd of the control cable’s free end results in a heli-

cal bending deformation of the composite actuator. This

helical deformation is highly dependent on the fiber orienta-

tion angle in the middle layer /0. Fig. 1(e) presents the snap-

shots of different deformation modes as /0 varying from 0�

to 90�, and the cable displacement Dd is kept constant at

10 mm. We recorded the complex helical bending deforma-

tions using a self-built experimental platform (see supple-

mentary material, S2 and S3). As shown in Fig. S2, two

cameras were used to record the real-time deformation in

front and top views, while a servo motor was pulling the con-

trol cable to deform the composite actuators. We acquired

the deformation curves by projecting the centerline of the

deformed actuator to front and top planes, respectively (Fig.

S3). The two basic parameters characterizing a helical defor-

mation, pitch P and radius R [Fig. 1(d)], can be calculated

based on a parametric function described in supplementary

material (S3).

We investigate the effects of the orientation angle /0, as

well as the displacement of the control fiber Dd, on the slope

S (S ¼ P=2pR) and curvature j (j ¼ 1=R) of the helical

deformation, as shown in Fig. 2. In Fig. 2(a), the slope S
varies with the fiber orientation angle /0. At /0¼ 0� or 90�,

the slope S is zero, indicating that the actuators exhibit only

in-plane bending. At /0¼ 15�, the actuator deforms helically

with the overall steepest, upward-directed slope [toward the

positive X2 direction in Fig. 1(e)]. The upward slope

decreases gradually with the increase in /0 and reaches

nearly zero when /0 increases to 60�. At /0¼ 75�, the actua-

tor deforms helically with a downward slope [toward the

negative X2 direction in Fig. 1(e)]. The curvature j starts

at �10 m�1 when /0¼ 0� and reaches the maximum of

�90 m�1 at /0¼ 15�. From /0¼ 30� to 90�, the curvature j
varies slightly around 60 m�1 to 70 m�1. In Fig. 2(b), the

helical motion for increasing cable displacement Dd from 0

to 10 mm is analyzed. Actuations with different fiber

FIG. 1. (a) Schematic of a composite actuator consisting of two layers of a pure elastomer (top and bottom) and a layer of an anisotropic fiber reinforced com-

posite (middle). (b) The detailed parameters and coordinate systems of the composite including a basic fiber reinforced composite (c) which is oriented by an

angle /0 with respect to the x1 (X)1-axis. (d) A helically deformed composite actuator which can be characterized by two basic parameters, pitch P and radius

R. The inset of (d) illustrates a principle strain plane r1-r2, where the r3-axis coincides with the x3-axis and the r1-axis rotates counter-clockwise from the x1-

axis by /. (e) Experimental snapshots (front and top views) of the deformed composite actuators with a fiber orientation angle varying from 0� to 90� under a

10 mm control cable displacement.

FIG. 2. (a) Effect of the fiber orientation angle /0 on the slope S and curva-

ture j of helical motion (experimental results: blue squares and model pre-

dictions: black solid curves). (b) Effect of the control cable displacement Dd
on the slope S and curvature j of a helical motion [experimental results:

black squares (15�), red circles (45�), and blue triangles (75�); and model

predictions: black solid curves (15�), red dash curves (45�), and blue dash-

dot curves (75�)]. (c) and (d) Visual comparisons between experiments and

3D model simulations on the effects of /0 and Dd.
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orientation angles /0 possess different slopes, while the

slopes stay roughly constant during the increase in the cable

displacement. This indicates that the slope is an intrinsic

property of a composite actuator, which is only dependent on

the actuator’s geometric and material properties. The curva-

ture j increases linearly with the increase in the cable dis-

placement and varies only slightly with orientation angle /0.

We develop a theoretical framework based on the mini-

mum potential energy method42,43 to model the complex

helical bending deformations. During bending, the total

potential energy P in the system can be written as

P ¼
X3

i¼1

ð
1

2
ei : C

i : eidVi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ui

þ 1

2
kcðDLcÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Uc

�Fc � Dc|fflfflffl{zfflfflffl}
Wc

: (1)

Ui is the elastic energy stored in the top (i¼ 1), middle

(i¼ 2), and bottom layers (i¼ 3), which can be calculated

using the corresponding strain tensor ei, fourth-order elastic

stiffness tensors C
i
, and volume Vi. Uc is the elastic energy

stored in the elastic control cable, which has the axial stiff-

ness kc and is elongated by DLc, and Wc is the work potential

of the control cable, which can be readily computed as the

dot product between the force vector Fc¼ ½ T 0 0 �T and

displacement vector Dc¼ ½Dd 0 0 �T.

In order to facilitate the model description, we set a sta-

tionary reference frame X1–X2–X3, whose origin sits on the

center point of the composite’s top surface, and the X1-, X2-,

and X3-axes are oriented along with the composite’s length,

width, and thickness directions [Fig. 1(a)]. We also set a

local reference frame x1–x2–x3, which coincides with the sta-

tionary global X1–X2–X3 reference frame in the undeformed

state [Fig. 1(a)] but moves following the deformation of the

composite [Fig. 1(d)]. In addition, we set a fiber reference

frame m1–m2–m3 [Fig. 1(b)], where the m1-axis rotates

from the x1-axis by the fiber orientation angle /0 around the

m3-axis. In a helically bent composite, we can always find a

principle strain plane [r1–r2 plane, inset of Fig. 1(d)] where

the r3-axis coincides with the x3-axis and the r1-axis rotates

counter-clockwise from the x1-axis by / . In this r1–r2 prin-

ciple strain plane, there is no shear deformation. Therefore,

the strain tensor only has three principle components e11,

e22, and e33. In helical bending, a composite bends about the

r1-axis and r2-axis with curvatures j1 and j2, respectively.

Based on Euler–Bernoulli beam theory, we can calculate the

strain tensors in any parallel plane which offsets x3 from the

r1-r2 principle strain plane as

eðrÞ ¼ eðrÞ11 r1 	 r1 þ eðrÞ22 r2 	 r2 þ eðrÞ33 r3 	 r3; (2)

where eðrÞ11 ðx3Þ ¼ e11þ x3j1, eðrÞ22 ðx3Þ ¼ e22þ x3j2, and eðrÞ33 ðx3Þ
¼ e33þ x3q. Here, q denotes the gradient of the strain com-

ponent along the x3-axis, which is required for plane strain

compatibility. Using eðrÞ11 , eðrÞ22 , and eðrÞ33 , we can calculate the

strain components eij of the strain tensor e (e¼ eijxi	 xj)

in the x1–x2–x3 frame through the tensor coordinate

transformation,

eij ¼ Q
ð1Þ
mi Q

ð1Þ
nj eðrÞmn: (3)

Here, Q
ð1Þ
ij are the components of the orthogonal tensor Qð1Þ

that can be used to rotate the vectors in the r1–r2–r3 frame to

the x1–x2–x3 frame by an angle /. Qð1Þ includes only the

non-zero components Q
ð1Þ
11 ¼ Q

ð1Þ
22 ¼ cos /, Q

ð1Þ
12 ¼ �Q

ð1Þ
12

¼ sin /, and Q
ð1Þ
33 ¼ 1.

As the top and bottom layers are made of an isotropic

elastic matrix material, the fourth-order stiffness tensor C
i

(i¼ 1, 3) can be readily calculated using the Young’s modu-

lus Em and Poisson ratio �m as shown in matrix form in the

supplementary material (S4). Thus, the elastic energy Ui

(i¼ 1, 3) stored in the top and bottom layers can be com-

puted based on Eq. (1)

Ui ¼
ð

1

2
km þ 2lmð Þ eðrÞ11

� �2

þ eðrÞ22

� �2

þ eðrÞ33

� �2
� ��

þkm eðrÞ11 eðrÞ22 þ eðrÞ22 eðrÞ33 þ eðrÞ33 eðrÞ11

� ��
dVi; (4)

where km¼Em�m=ð1þ�mÞð1�2�mÞ and lm¼Em=2ð1þ�mÞ.
The middle layer is a fiber reinforced orthotropic composite

which is designed by rotating the basic fiber reinforced com-

posite by /0 in the counter-clockwise direction [Figs. 1(b)

and 1(c)]. The fourth-order stiffness tensor C
2 of the basic

composite can be expressed in a Voigt matrix notation with

nine independent parameters C11, C12, C13, C22, C23, C33,

C44, C55, and C66, which can be readily calculated using the

experimentally measured parameters (see supplementary

material, S5). In addition, using the coordinate transforma-

tion tensor Qð2Þ, which includes only the non-zero compo-

nents Q
ð2Þ
11 ¼Q

ð2Þ
22 ¼cosð/0�/Þ, Q

ð2Þ
12 ¼�Q

ð2Þ
12 ¼�sinð/0�/Þ,

Q
ð2Þ
33 ¼1, we can express the strain tensor eðmÞ (eðmÞ¼eðmÞij

mi	mj) in the m1–m2–m3 frame in terms of the strain tensor

eðrÞ in the r1–r2–r3 frame

eðmÞij ¼ Q
ð2Þ
mi Q

ð2Þ
nj cðrÞmn: (5)

The elastic energy U2 stored in the middle layer described

as
Ð

1
2
e2 : C

2 : e2dV2 in Eq. (1) can also be expressed asÐ
1
2
e2ðmÞ : C

2 : e2ðmÞdV2, as it is independent of the reference

frames. The complete expression of U2 is shown in the sup-

plementary material (S4).

At the position x3 ¼ �hc, the application of the external

force T to the control cable results in the helical motion of a

composite actuator. The elongation DLc of the control cable

is T=kc, where the axial stiffness kc was measured from an

experiment (see supplementary material, S5). Therefore, the

elastic energy Uc stored in the deformed cable is T2=ð2kcÞ.
Moreover, based on Eqs. (2) and (3), we can calculate the

normal strain component along the x1-axis e11 at x3 ¼ �hc as

e11ðx3 ¼�hcÞ ¼ eðrÞ11 ðx3 ¼�hcÞcos2/ þ eðrÞ22 ðx3 ¼�hcÞ sin2/.

The displacement Dd of the external force T acting on the

cable is e11ðx3 ¼�hcÞ �LþDLc. The work potential Wc by

the force T is

Wc ¼ LT e11 � hcj1ð Þ cos2/þ e22 � hcj2ð Þ sin2/
	 


þ T2=kc:

(6)
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In summary, the total potential energy of a composite

actuator is a function of seven unknowns, i.e., P ¼ Pðj1;
j2; q; e11; e22; e33;/Þ. The composite actuator arrives at the

equilibrium when the total potential energy is minimized,

which means

@P
@j1

¼ 0;
@P
@j2

¼ 0;
@P
@q
¼ 0;

@P
@e11

¼ 0;

@P
@e22

¼ 0;
@P
@e33

¼ 0;
@P
@/
¼ 0: (7)

By solving the seven equations in Eq. (7) numerically, we

can obtain the seven unknowns to express the total potential

energy. Using j1, j2, and /, we can calculate the magnitude

of pitch P and radius R of a helical deformation (supplemen-

tary material, S7)

jPj ¼ 2p
j1 � j2ð Þsin 2/

j2
1 þ j2

2 þ j1 � j2ð Þ j1 þ j2ð Þcos 2/
;

R ¼
j1 þ j2 þ j1 � j2ð Þcos 2/

j2
1 þ j2

2 þ j1 � j2ð Þ j1 þ j2ð Þcos 2/
: (8)

Here, P is positive if the actuator twist towards the positive

X2-direction. The calculated P and R can be further used to

compute the slope S and the curvature j.

With the material parameters measured from experi-

ments (see supplementary material, S5), our theoretical

framework can predict the helical deformations with differ-

ent fiber orientation angles /0 and different control cable

displacements Dd, respectively. In Figs. 2(a) and 2(b), the

model predictions qualitatively agree with the experimental

results. We also constructed the deformed 3D geometries

(see supplementary materials, S6). In Figs. 2(c) and 2(d), the

model predictions demonstrate good agreement with experi-

mental snapshots.

The validated theoretical framework can be further used

as a design tool to guide the design of helical deformations

of cable-driven anisotropic composite actuators. The effects

of geometrical/material parameters fiber volume fraction vf ,

fiber stiffness Ef , cable position hc, and middle layer position

h2 on the helical behavior are studied. In all the parametric

studies, we keep the external force constant (F¼ 16 N) and

assume that the stiffness of the control fiber is infinite. The

effect of the control cable position hc and the middle layer

position h2 on the helical deformation is only shown in the

supplementary material (S7).

In Fig. 3, we explore the effects of the middle layer’s

fiber volume fraction vf . The insets of Figs. 3(a) and 3(b)

present the overview of the effect of vf on the slope S and

the curvature j of the composites with different orientation

angles /0. Figure 3(a) suggests three key insights into the

effect of vf on the slope S: (i) the composite exhibits in-plane

bending not only at /0¼ 0� and 90� but also at /0¼�55�.
The previous study explains this angle as a turning point,

where the fibers only perform rotational deformation rather

than elongation;40 (ii) between /0¼ 0� and 55�, the compos-

ite actuator deforms helically with a positive upward slope,

and between /0¼ 55� and 90�, the helical deformation is

opposite; (iii) the increase in vf leads to a remarkable

increase in the positive upward slope S between /0¼ 0� and

55�, while the increase in the negative downward slope S
between /0¼ 55� and 90� is only small. In Fig. 3(b), the

increase in vf does not cause a significant increase in curva-

ture j, and the maximum j always occurs at /0¼ 55�.
Figures 3(c) and 3(d) demonstrate the effect of vf on S and j
for the two particular composites with /0 ¼ 15� and 75�. In

Fig. 3(c), the increase in vf leads to a continuous increase in

slope S when /0¼ 15�, while the curvature j first decreases

to a minimum at vf¼ 0.06 and then increases with the

increase in vf. In contrast, the change in S and j is relatively

small at /0 ¼ 75�, and the increase in vf results in a continu-

ous decrease in j. In the insets of Figs. 3(c) and 3(d), the

deformed 3D representations clearly illustrate the effect of vf

on the helical deformations of the two composites.

Figures 4(a) and 4(b) present the effect of the fiber stiff-

ness Ef on the slope S and the curvature j , with Ef varying

from 1/100Ef0 to 10Ef0, where Ef0 is the original fiber stiff-

ness (Ef0 ¼ 1.2 GPa). In general, the increase in Ef results in

greater anisotropy, thus significantly increasing S. This trend

is reflected by the deformed 3D representations, whose ori-

entation angles are 15� [Fig. 4(c)] and 75� [Fig. 4(d)]. In Fig.

4(c), it is also found that at /0¼ 15�, the minimum j exists

at a moderate Ef ¼ 10�0.75Ef0. This is due to the competition

between the bending modulus, which is increased with the

increase in Ef, and the bending moment, which is also

increased as the larger Ef shifts the neutral plane away from

the external force application point.

In summary, we developed a theoretical framework

based on the minimum potential energy method to model the

controllable helical deformation of cable-driven anisotropic

composite actuators. We validated the framework with

experimental results for multimaterial 3D printed compo-

sites, captured from a self-built experimental platform. The

framework reproduces helical deformations with different

FIG. 3. The dependence of (a) slope S and (b) curvature j on fiber orienta-

tion angle /0 for different fiber volume fractions vf¼ 0.1, 0.2, 0.3, and 0.4;

the insets show the corresponding 3D figures. The dependence of S and j on

vf for soft actuators with (c) /0¼ 15� and (d) 75� is shown; the insets show

deformed shapes with vf¼ 0.1 (i), 0.3 (ii), and 0.5 (iii).
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design parameters. We further use the developed framework

to investigate the effects of material and geometric parame-

ters on helical deformations.

See supplementary material for additional information

on analytical modeling and experiments.
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