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ABSTRACT

Stretchable sensors are promising in the field of wearable robotics. To date, it is still a challenge to
design an artificial skin with thin and sensitive stretchable sensors. In this paper, we present a new
artificial skin, SkinGest, integrating filmy stretchable strain sensors and machine learning algorithms
for gesture recognition of human hands. The presented sensor has a sandwich structure consist-
ing of two elastomer layers on the outside and one soft electrode layer in the middle. Based on the
improved fabrication process, we make the sensor’s thickness down to 150 um, while keeping the
gauge factor (GF) up to 8. Then, we integrate the machine learning algorithms (using LDA, KNN and
SVM classifiers) with the stretchable sensors in our SkinGest system for gesture recognition. Sup-
ported by the experimental data from different subjects, our SkinGest system succeeds in identifying
American sign language 0-9 with an average accuracy of 98%. The results demonstrate that the pro-
posed SkinGest system provides a promising platform for future potential virtual reality and sign
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language recognition applications.

1. Introduction

Gesture recognition is an intuitive way for humans to
interact with intelligent machines and is increasingly
important in virtual reality. However, the primary way
for humans to interact with intelligent devices is still
via keyboards or hand-held equipment. More intuitively,
accurate and comfortable wearable devices are promising
in daily life [1].

To this end, various band-like wearable devices with
the traditional rigid sensors have been developed for ges-
ture recognition [2]. For instance, Guo et al. explored
Electromyography (EMG) combined band-like wearable
device to recognize amputees’ intention for a prosthetic
hand [3]. Jiang et al. utilized a wristband fusing the EMG
and inertial measurement sensors for hand gesture recog-
nition [4]. Dementyev et al. used an array of force resis-
tive sensors around the wrist to detect tendon movements
[5]. Jung et al. employed an air bladder with pressure sen-
sors around the forearm to detect muscular activity [6].
These approaches are accurate for a limited set of hand
gestures, but classification accuracy generally decreases
when the number of gestures increases. Data gloves offer
another approach to recognize and reconstruct finger

movement with high accuracy [7,8]. However, they are
typically large, bulky and expensive.

Therefore, developing a kind of light weight, cheap
sensors for gesture recognition is of great significance
[9-13]. As shown in Figure 1, many interesting works
have been reported to develop sensing skins with soft
sensors. Kyongkwan et al. developed a sensing skin to
measure abduction and adduction of fingers [14], which
was bulky. To make the sensing skin thinner and lighter,
commercial elastomer VHB (3M, thickness = 0.5 mm)
and conductive bond could be applied to fabricate a
transparent and extremely thin artificial skin shown in
Figure 1(b) [15]. However, VHB has strong viscosity and
may influence the comfortableness, thus human-friendly
silicone gel becomes a better choice [16]. Muth et al.
reported an embedded 3D-printing method for fabricat-
ing strain sensors within highly conformal and extensible
elastomeric matrices Ecoflex [17]. Frank et al. designed
an array of modular liquid metal-embedded silicone
elastomer sensors to measure hand motion and contact
pressure [18]. In [19], a wearable soft artificial skin apply-
ing liquid metal and elastomer Ecoflex was developed to
measure the motions of the metacarpophalangeal point
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Figure 1. Previously developed gesture recognition systems. (a) A wearable soft sensor for measuring the flexion/extension of each
finger and the abduction/adduction between fingers [14]; (b) a sensing skin manufactured by applying soft transfer printing technique
[15]; (c) a 3D-printed glove-like sensor to identify gestures [17]; (d) a modular soft sensor-embedded glove to detect finger motion and
tactile pressure [18]; (e) a wearable soft artificial skin applying liquid metal [19]; (f) a skin-attachable stretchable sensor based on liquid
metal on finger joints to monitor motions [20]; (g) a capacitive type sensing glove with high stretchability and great linearity [21].

(MCP) and the proximal interphalangeal point (PIP)
joints of each finger as well as the motion between thumb
and index fingers. Jeong et al. introduced a liquid metal-
integrated system for human motion sensing, combining
soft materials and advanced near-field-communication
functionality [20]. Although liquid metal is one of the
most popular electrodes, some works have been con-
ducted in developing other replaceable electrodes. Shin-
take et al. developed a capacitive-type sensing glove with
high stretchability and great linearity, using carbon-filled
elastomer as electrode and Ecoflex as substrate. Apply-
ing film-casting technique and laser ablation, the sensors
could be fabricated rapidly (Figure 1(g)) [21]. Seok et al.
demonstrated a high-performance wearable strain sen-
sor using heterostructure nanocrystal solids with high
accuracy and thin thickness [22].

Although previous works have demonstrated the great
feasibility of applying soft sensors in gesture detecting,
more requirements come to develop an ideal soft sensor
with features like invisible and easy to be attached to the
skin [23,24]. In general, the reported works usually failed
to simultaneously achieve these two objectives, limited
by the materials and fabrication process. An ideal arti-
ficial skin also asks for other features like thin thickness,
light weight and extreme stretchability. Recently, various

manufacturing methods have been developed in order to
achieve these features [25-30]. Among all these methods,
one of the most common ways is to cure soft elastomer
and then embed conductive materials upon it [15,31].
Channels are implemented into the elastomer base and
then conductive materials are injected [19]. However, the
deficiency of this manufacturing method is that certain
thickness of elastomer base is required to create chan-
nels, limiting the whole thickness of sensors to be thinner
[32,33]. Thus, the whole weight of the sensor is difficult to
decrease as well. In addition, the manufacturing process
is relatively complex [14]. Besides, few works have dis-
cussed the universal practicability of their artificial skins
though experimental data from different subjects.

In this paper, we present a new artificial skin, SkinGest,
integrating filmy stretchable strain sensors (Figure 2(a))
and machine learning algorithm for gesture recognition
of human hands (Figure 2(b)). The presented sensor has
a sandwich structure consisting of two elastomer lay-
ers on the outside and one soft electrode layer in the
middle. Based on the improved fabrication process, we
make the sensor’s thickness down to 150 pm, which is
about 47% ~90% thinner than the reported works. At
the same time, the gauge factor (GF) of our developed
sensing system is up to 8, higher than the available works
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Figure 2. (a) Structure of a single sensor; (b) SkinGest prototype for gesture recognition.

with the silicone and carbon grease as well. Further-
more, machine learning algorithms, using LDA, KNN
and SVM classifiers, are integrated into our SkinGest
system for gesture recognition and sign language digits
identification. Finally, we conduct the experiments using
our SkinGest system by different subjects. Experimental
results demonstrate that our artificial skin system suc-
ceeds in identifying American sign language (ASL) 0-9
with an average accuracy of 98%.

The rest of this paper is organized as follows. The
fabrication process is introduced in Section 2. Section 3
presents the performance of our sensor, as well as its
application in gesture recognition with experimental data
from different subjects. Finally, the conclusion of this
study is drawn in Section 4.

2. Fabrication

The fabrication part involves multiple steps, including
polymer casting, electrode embedment and sealing [34].
Figure 3 shows the schematic description of the whole
manufacturing process. Elastomer is chosen as the sub-
strate because of its stretchability and transparency. Car-
bon grease is employed as the stretchable electrode owing
to its moderate mobility, and flexible copper-tin fab-
ric wires are adopted for connections between sensors
and electronics for its outstanding flexibility as well as
acceptable electrical conductivity [35].

2.1. Polymer casting

The base layer and the sealing layer of this sensor are
made of soft elastomer (Sylgard, 184 or 186 silicone
elastomer) by mixing two parts (resin and hardner, 10:1
mixed ratio in weight). To fabricate the thin films, an
automatic film applicator coater (Zehnther, ZAA 2300,
with a drawing speed of 0-99 mm/s and a resolution of
1 um) is applied (see Figure 3(a)). The distance between
the wire-bar applicator and the automatic film applicator
coater platform is able to be adjusted to get films with cus-
tomized thickness. The detailed processes for fabrication
are listed as follows, which can also be seen in Figure 3.

e Firstly, a polyethylene terephthalate (PET) film is
placed on the coating machine platform as a substrate
layer (Figure 3(a)).

e Secondly, a sacrificial layer (polyacrylic acid and iso-
propyl alcohol, 1:4 mixed in weight) with a thick-
ness of 20 um is coated with a drawing speed of
3mm/s. Then, the film is cured at room temperature
for approximately 5min (Figure 3(b)). By using the
sacrificial layer, the PET film and elastomer layer can
be separated easily owing to its volatility.

e Thirdly, an elastomer layer is coated upon the sacrifi-
cial layer with a drawing speed of 1 mm/s, then cured
at 60°C for approximately 25 min (Figure 3(c)).

e Fourthly, the whole three layers, including the PET
layer, the sacrificial layer and the elastomer layer, are
transferred into a sink with hot water inside for 3 min.
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Figure 3. The manufacturing process of a filmy strain sensor: (a) a PET film is placed on the coating machine; (b) a sacrificial layer is
coated and cured upon the PET film; (c) an extremely soft elastomer layer is coated and cured upon the sacrificial layer; (d) these three
layers are transferred into a sink with hot water inside to dissolve the sacrificial layer; (e) the extremely soft elastomer is taken off; (f)
carbon grease and cooper-tin fabric wires are embedded; (g) another layer of extremely soft elastomer is coated to seal.

The sacrificial layer can be dissolved into water, and
then the elastomer film can be taken off easily (Figure
3(d)). Alternatively, the layers can be placed at room
temperature for about 12 h and the sacrificial layer will
volatilize to separate the PET and the elastomer layers.
Applying these four steps, the elastomer films can be
produced in large quantities (Figure 3(e)).

2.2. Electrode embedment

The elastomer films are cut into specific shapes. Here the
shape of the electrode is designed as a rectangle with a
length of 20mm and a width of 10 mm. Carbon con-
ductive grease (847, MG Chemicals), which is applied
as the resistor electrode, is brushed into the rectangle
with extremely thin thickness. Through an LCR meter,
the resistance values of the sensor are observed, and
thus the amount of carbon grease can be controlled and
adjusted depending on requirements. Cooper-tin fab-
ric is then used as the conductive wires to connect the
resistor electrode with the LCR meter (Figure 3(f)).

2.3. Sealing

Beyond the electrode area above the elastomer film, an
extreme thin layer of elastomer 184 or 186 is brushed as
the adhesive. Another elastomer film with the same thick-
ness is coated above before the thin layer solidifies. Then,

the sealed sample is cured at 60°C for approximately
25 min again (Figure 3(g)). The completed strain sensors
have thin thickness and light weight mainly depending
on the thickness of the elastomer layer, which can be
user-defined. Areas beyond the electrode are transparent.

3. Experiments
3.1. Performance

Since the fabrication method is also appropriate for other
kinds of elastomers, a group of experiments is performed
to decide the most suitable material. In this section, we
apply this method to fabricate three kinds of elastomer
films that are commonly used to fabricate soft sensors,
Ecoflex 30 (Smooth-On), 184 and 186 silicone elastomer
(Sylgard). Another sandwich-structured sensor with a
substrate made from commercial material VHB (4905,
3M, thickness = 0.5 mm), which is often used to make
filmy soft sensors at present, is manufactured as a com-
parison. After the fabrication process, the sensor samples
are stretched to test resistance responses with deforma-
tion during loops. The sensitivity of the strain sensor can
be obtained in the following equation:

AR/R = Gs + ab, (1)

where AR stands for the resistance change and R is the
original resistance, G, ¢, o, 0 mean the GE the strain
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Figure 4. The schematic diagram of the test circuit.

applied, the temperature coefficient and the temperature
change, respectively.

With an additional thin layer of silicone gel, the sensor
is easily adhered to the human skin. Owing to the excel-
lent stretchability of soft elastomer and carbon grease,
the sensor can be used to detect large deformations of
the human body like the motions of finger joints, wrist
joints and elbow joints. Different gestures cause different
stretch compositions among fingers, resulting in differ-
ent resistance change patterns. Therefore, by measuring
the resistance of sensors, gestures can be reconstructed
by a proper algorithm. A resistance measuring circuit is
designed with 5-channel sensors connected to a voltage
divider circuit via a multiplexer (CD74HC4067, Texas
Instruments, USA) (Figure 4). A standard resistance is
chosen to share the voltage provided by a microproces-
sor (STM 32 F429, STMicroelectronics, Italy). The inner
analog to digital converter (ADC) samples the analog
voltage between sensors and standard resistance. Digital-
ized voltage values are transmitted to the computer via
I2C communication protocol and MATLAB is used to
process all of the data on a standard desktop computer
with a sampling frequency of 20 Hz.

Figure 5(a) plots the relationship between strain and
response for the sensor samples with different substrates.
In this test, the length of the electrode is loaded towards
a deformation of 100% and then unloaded to the original
state. From Figure 5(a), the responses of sensors during
strain loops can be observed. Sample with VHB as the
substrate shows nonlinear behavior while the other three
show approximate linearity. However, it is notable that
the maximum resistances of sensors inevitably increase
during loops, which is undesirable for the soft sensors.
Among them, the one made from VHB substrate is
the most prominent one while the one made from 186
elastomer substrate shows less variation and best repeata-
bility. Sensors made from 184 elastomer and Ecoflex 30
substrates also demonstrate linearity and repeatability
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over the sensor fabricated from commercial VHB sub-
strate.

With the material elastomer 186, another group of
experiments is conducted to identify the influence of
membrane thickness of the sensors. Experimental results
demonstrate that the responses of our developed sen-
sors are approximately linear and the sensitivity (GF)
increases as the thickness decreases (Figure 5(b)).

Another experiment is conducted to investigate the
temperature effect on sensing performance. From the
experimental results, we can see that under a certain tem-
perature, the sensor is robust over time (Figure 5(c)).
With the increase in temperature, the performance of
the sensor slightly changes (AR/R < 0.005 under 40°C).
Therefore, the temperature effect can be ignored under
40°C. In this sense, Equation (1) can be simplified as

AR/R = Ge. (2)

Furthermore, in this paper, we integrate multiple sin-
gle strain sensors into an artificial skin, SkinGest, to
recognize hand gesture (Figure 6).

An integrated sensor system with five single strain sen-
sors on a palm-like elastomer film is fabricated applying
the process in Section 2. The integrated artificial skin
is used to detect the motions of MCP joints except for
the thumb finger. The DIP joint instead of MCP joint of
thumb finger is measured because it has more obvious
motion. The integrated artificial skin has a total weight
of about 4 g with an area of 160 cm?, resulting in a pres-
sure of 0.25 Pa towards the back of the hand (a piece of
A4 paper weighs 4.5 g with an area of 624 cm?, leading to
a pressure of 0.072 Pa).

3.2. Gesture recognition

A serial of different gestures are designed and performed,
and machine learning algorithms are used to classify
these gestures. The voltage value data collected from the
sensor is transformed to sensor resistance as a feature
because the resistance has a relatively linear relationship
with sensor’s stretching, which is directly correlated to
finger’s movement. Linear discriminant analysis (LDA),
K nearest neighbor (KNN) and support vector machine
(SVM), are employed. Because of the linearity of the mea-
sured signal, a linear kernel is chosen for SVM. All the
algorithms are run on MATLAB on computers and open
source of LIBSVM [36] is used for SVM.

Preliminary testing is conducted with six subjects
(three males and three females: 24.0 £ 1.1 years, height:
168.0 & 13.4 cm, weight: 60.2 4= 14.8kg). As a consider-
ation that target gestures should be intuitive and com-
monly used in daily life, digits 0-9 from ASL are chosen
as the target gesture sets which are often used [36,37]
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Figure 6. Raw signals of SkinGest system in performing American sign language digits 0 ~ 9.

in human computer interaction research. Sensors are
put on subject’s hand via user friendly gel. Subjects
are instructed to do corresponding gestures for 10 tri-
als. Each gesture is performed for 5s per trial and the

sampling rate is 20 Hz since normal hand movement fre-
quency is generally low than 5Hz [38]. The changes in
resistance values of all five strain sensors are observed
in real time through MATLAB when different gestures
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are performed. The resistance value of each sensor grows
up obviously when the corresponding finger bends. Even 100

though noise exists, the differences between different ges-
tures are remarkable (see Figure 6). Signals from bot-
tom to top come from sensors placed on thumb, index,
middle, ring and little fingers, respectively.

Oftline methods are used to access classification accu-
racy. Leave-one-out cross validation (LOOCYV) [5,39] is
commonly used to access the performance of classifi-
cation tasks. LOOCV method uses 1 subset as testing
and the others as training and iterates the same proce-
dure so that every subset has been chosen as testing sets
once. Accuracy is calculated as the mean of K (K equals
to total numbers of subsets) times predictive accuracy
(Figure 7). 97.8 2.3%, 97.9 & 1.7%, 97.9 &= 1.7% accura-
cies are obtained for the LDA, KNN and SVM classifiers,
respectively (Figure 8).

3.3. Discussion

Here, we compare several features of our artificial skin
with the current available soft artificial skins in reported
works including the materials, sensitivity, thickness and
stretchability (Table 1).

Morphological experiments are conducted to identify
the influences of different substrate materials and thick-
nesses on the performance of the sensors. To this end,
elastomer 184, 186, Ecoflex and VHB are applied as the
substrate for comparison, respectively. The experimen-
tal results indicate that the sensor with the elastomer 186
shows the best performance. Furthermore, sensors with
substrate thicknesses of 200, 150, 100 and 75 pum are com-
pared and results demonstrate that the sensitivity of the
sensor increases with the decrease of the morphological

98

96

94

Classification Accuracy(%)

92

90

LDA

KNN SVM

Figure 8. Classification accuracy of different classifiers. LDA: lin-
ear discriminant analysis; KNN: K nearest neighbor; SVM: support
vector machine.

thickness. We also demonstrated in Table 1 that the thick-
ness of our sensor is reduced by 47-90% compared with
other works while the sensitivity increases greatly up to 8.

With respect to the classification accuracy of gesture
recognition, results are also compared with forearm and
wrist based ways [3,5], because in this work, sensors are
put on finger joints while band-like solutions measure
indirect signals such as wrist shape change or muscle elec-
trical signals. Concerning the wearable comfort, the pro-
posed system is highly soft and stretchable and compliant
to shape change with finger flexion without exerting too
much interference. Besides, the sensors only cover the
back area of the hand and thus do not influence the palm
and finger sensation. Although the sensors are attached
to the skin by gel, it is easy to be detached and can be
reused for multiple times.
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Table 1. Comparisons of features of the current available soft artificial skins.

Reference Elastomer material Electrode material Sensitivity (GF) Thickness (um) Stretchability
[14] Silicone EGaln 3.21 2000 35%

[15] VHB 4905, 3M Conducting bond (eCAP 7850, 3M) 0.6 800-1800 100%

[17] Ecoflex Conductive ink 5 1000 400%

[18] Ecoflex Liquid metal 423 2000 30%

[19] Ecoflex Liquid metal 1.667 2000 200%

[20] PDMS Liquid metal 2 380 50%

[21] Ecoflex Carbon black-filled elastomer 0.83-3.37 940 500%

Our work PDMS Carbon grease 8 150 100%

However, the results still suffer from some misclassi- Disclosure statement

fication, for which the reason lies in some noise interfer-
ence and hysteresis characteristics of sensors. Besides, not
all subjects can do standard target gestures. For example,
subject 1 can not only bend middle finger without mov-
ing ring finger, thus making gesture digit 8 not standard.

4. Conclusion

In this paper, we present an improved manufacturing
process to fabricate a firmly stretchable strain sensor. The
developed sensor is of resistance type and composed of
three layers, two sealing layers and an electrode layer in-
between. Soft elastomer is used as the sealing layer while
carbon conductive grease is applied as the resistance elec-
trode, copper—tin fabric as the conductive wires. Sensors
manufactured in this way have noteworthy features, such
as thin thickness, light weight, easy fabricated method,
low cost and high transparence. For the sake of improv-
ing sensitivity and stability, comparative experiments on
different substrate materials and sensor’s thickness are
conducted. Finally, the thickness of our sensor is reduced
down to 150 um while the GF is increased up to 8.

This study also presents the validation of artificial skin
system to recognize precise finger gestures. As a concern
that breathability may have an influence on comfortable-
ness, ventilation holes are designed on the artificial skin.
Experimental data from six subjects demonstrate that the
SkinGest system has a high average accuracy of 98% for
gesture recognition and sign language digits identifying.

Although sensors fabricated in this technology present
excellent feasibility, we find that the characteristics
change as the number of use increases during exper-
iments. Besides, experimental results demonstrate that
substrates made from different kinds of elastomers will
affect the performance, which may be caused from the
interaction between substrate and electrode, still needing
more study to investigate. In order to fabricate a com-
plete invisible wearable sensor, which asks for total trans-
parence and extremely light weight, we are also exploring
some other conductive materials as alternative electrodes
and refining the manufacturing process.
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