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Abstract—Hysteresis modeling is interesting yet challenging
for piezoelectric actuated systems, which are often used in
micro/nano scale measurement and manufacturing equipments.
However, due to its complexity, few efforts have been devoted
to characterizing cross-coupling hysteresis effect of multi-axis
piezoelectric micropositioning stages. To this end, a distributed
Hammerstein model, composed of a cascaded connection of a
static nonlinearity and a dynamic linearity, is proposed in this pa-
per to approximate the nonlinear spatial/temporal cross-coupling
effect. This model outperforms conventional piezo models such as
the Preisach model. Meanwhile, theoretical analysis is provided
to guarantee the convergence of the proposed Hammerstein
model. Finally, extensive experiments are conducted to verify
the superiority of the proposed modeling method.

Index Terms—Piezoelectric devices, hysteresis, modeling

I. INTRODUCTION

These years have witnessed the tremendous development of
nano-positioning systems widely used in modern nanometer
measurement and manufacturing equipments. To obtain high
precision of nano-scale positioning systems like scanning
tunneling microscopes (STMs) [1], atomic force microscopes
(AFMs) [2], lithographic machines [3], ultrahigh vacuum
precise positioning devices [4], micro-robot arm [5], etc., smart
material actuators, represented by piezoelectric actuators [6],
[7], [8] are commonly used.

The positioning control precision of piezoelectric actuators
is bottlenecked by the nonlinear dynamics including creep and
hysteresis. Recently, the adverse effects of cross-couplings of
multi-axis piezoelectric micropositioning stages have attracted
more and more attentions [9]. Take AFMs for example,
triangular signals applied to the X-piezoelectric actuated
scanner often deform the trajectory in the X-Y landscape and
hence distorts the scanned images due to the X-Y axes cross-
coupling effect [10]. Significantly, the cross-coupling effect
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is dominant at high frequencies, which may cause not only
crumpling and tilting the scans [10], [11] but also the loss of
the surface information about the sample [12]. Such a non-
negligible cross-coupling effect mainly caused by inter-axis
friction, pressure and pre-load forces substantially lowers the
positioning control precision. Thus, the cross-coupling effect
becomes one of the main complications associated to mi-
cro/nano scale detection processes (e.g., AFMs and STMs) and
nano-manufacturing equipments (e.g., lithographic machines).
However, due to its complex cross-axis dynamics, most of
the existing modeling schemes, including Preisach [13], Bouc-
Wen [14], Prandtl-Ishlinskii [15], cascaded nonlinearity [6]
models, merely focus on the single-axis hysteresis dynamics.

Till date, there are very few niche modeling methods
for cross-coupling hysteresis of the multi-axis piezoelectric
micropositioning stages, which are however indispensable for
both piezoelectric actuated mechanism analysis and high-
precision controller design. Most of the existing works [9],
[11], [16], [17] focused on decoupling the cross-couplings
to facilitate controller design. For instance, Yong et al. [9]
developed a robust H∞ controller to minimize the X-Y axes
cross-coupling of the piezoelectric actuated stage of an AFM.
Habibullah et al. [11] designed an internal reference model-
based optimal linear quadratic Gaussian (LQG) controller to
address the cross-coupling effect of a high-precision lateral
positioning used in a piezoelectric tube scanner (PTS) of an
AFM. Wu et al. [16] proposed an adaptive double integral
sliding mode control scheme to compensate for the cross-
coupling in AFMs, where phase feedback signals were used
as well to increase the scanning sensitivity. Rana et al. [17]
designed a multi-input multi-output model predictive control
(MPC) method to counteract the cross-coupling in a PTS.

Among the few existing works of direct identification on
cross-coupling hysteresis dynamics, Tan et al. [18] developed
a neural-network-based sandwich model to describe the non-
linear X–Y axes interactive dynamics, which was afterwards
used in a nonlinear decoupling controller to counterbalance
the cross-axis coupling effect. Based on the response surface
methodology, Qin et al. [19] proposed a computational opti-
mization method to address the cross-axis interactive dynam-
ics. With such an optimization method, they presented a novel
mechanical design for a 2-DOF piezoelectric actuator to sub-
stantially alleviate the cross-axis coupling. With the assistance
of laser interferometry sensors, Bhagat et al. [20] proposed
a parameter identification approach, which was afterwards
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used in a robust motional controller to compensate for the
cross-axis coupling effect between the two axes of a flexure-
based stage. Fung et al. [21] proposed an improved Bouc-
Wen hysteresis model to identify the cross-coupling effects,
where a real-coded genetic algorithm method was adopted to
train the model parameters. Das et al. [22] provided a linear
data-driven modeling method to approach the cross-coupling
dynamics of a scanner in the lateral and longitudinal axes,
which was subsequently used in a negative-imaginary damping
controller to restrain the first resonant mode and to attenuate
the cross-coupling effect as well. Xu [23] proposed a least
square support vector machine learning method, which has
gained better modeling performance than traditional Bouc-
Wen model [14]. From the modeling aspect of distributed
parameter systems, Qi et al. [24] proposed a kernel-based
modeling scheme with the assistance of Karhunen-Loève de-
composition and Galerkin method, which shows the potential
of approaching cross-coupling effect of piezoelectrical stage.
Li et al. [25] and Lai et al.[26] adopted a finite element
analysis method to investigate the cross-coupling dynamics
around the resonance frequency. Accordingly, they designed
a center-thickened beam structure together with a symmetric
configuration of the parallelogram flexure to effectively reduce
the cross-coupling effect. So far, most of the existing cross-
coupling modeling methods are either linear or lumping sys-
tem orientation. Thus, it is still an urgent yet challenging task
to develop an effective modeling method to approximate the
nonlinear spatial/temporal dynamics of cross-coupling effect
of piezoelectric stages.

To fulfill such a task, in this paper, we develop a pure
data-driven distributed multi-channel Hammerstein model. The
present model is a cascade connection of a static nonlinear
block and a dynamic spatial/temporal linear block. By feeding
a periodical exciting signal to the Y -axis, the spatial/temporal
data is gathered at different X–Y axes contacting positions.
Accordingly, a multi-channel identification scheme is derived
to guarantee high modeling precision without any prior-
knowledge about the mid-output. Afterwards, matrix spectrum
analysis is conducted to guarantee the convergence and the
modeling accuracy of the proposed Hammerstein modeling
method. Finally, data-driven experimental modeling perfor-
mances are provided to verify the effectiveness and superiority
of the model.

The remainder of the paper is organized as follows. The
piezoelectric actuated stage is described in Section II. Then,
the distributed Hammerstein modeling scheme is proposed in
Section III, and a systematic analysis on the convergence of
the scheme is provided as well. Afterwards, extensive mod-
eling experiments are conducted to verify the feasibility and
superiority of the proposed Hammerstein model in Section IV.
Finally, the conclusion is drawn in Section V.

Throughout the paper, the following notations are used: AT

denotes the transposition of a matrix A, R, R+, Z, N and
C are real number, positive real number, integers, positive
integers and complex number sets, respectively. The operator
⊗ represents the Kronecker product.

Fig. 1. The Physik Instrument (P-563.3CD) two-axis piezoelectric actuated
stage.

II. EXPERIMENTAL PIEZOELECTRIC ACTUATED STAGE

The experimental platform, i.e., a Physik Instrument (PI-
563.3CD) two-axis piezoelectric actuated stage (in abbr. PI
stage) is shown in Fig. 1 with structure given in Fig. 2. Therein,
two piezoelectric actuators and two capacitive position sensors
are mounted to the X- and Y -axes, respectively. The resonance
frequencies of X- and Y - axes are both 140Hz. The block
diagram of the PI stage is given in Fig. 3, where an exciting
signal u is fed into a high-voltage amplifier (HVA) via a
digital-to-analog (D/A) converter, where a uc signal is yielded
to drive the PI stage. Then, the X- and Y -axes displacements
are measured by capacitive displacement transducers (CDTs).
Afterwards, the displacement signal is transferred to a voltage
signal and then fed into the dSPACE-DS1103 block through
an analog-to-digital (A/D) converter.
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Fig. 2. (a): Schematic map of the piezoelectric stage; (b):Cross-coupling
between X–Y axis of different X–Y axes contacting positions.

In Fig. 2(a), due to the pre-load forces together with the
frictions and the asymmetrical structure of the PI-stage, the
motions along X- and Y -axes affect each other, which is
thus named as the cross-coupling effect. Quantitative analysis
confirms that the intensity of cross-coupling is non-negligible
for high-precision positioning control scenarios. To investi-
gate such a complex coupling effect, we feed an exciting
signal u to Y -axis of the PI-stage at different X–Y axes
contacting positions xi, i = 1, · · · , S, and measure the X-axis
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Fig. 3. The block diagram of the PI-stage control system.

displacement as shown in Fig. 2(b). Distinct cross-couplings
are observed at different contacting positions, which induces
the non-negligible adverse spatial/temporal effect of the cross-
couplings.

III. MODELING METHOD DEVELOPMENT

Fig. 4. Distributed Hammerstein model.

In this section, we aim to develop a nonlinear Hammerstein
model to approximate the spatial/temporal cross-axis dynam-
ics. As shown in Fig. 4, suppose the desired dynamics consists
of a cascade connection of a memoryless nonlinearity N(·, x)
and a distributed linear block G(z−1, x). More specifically,
they are governed by the following the input-output equation

y(t, x) = G(z−1, x) ·N(u(t), x) + γ(t, x), (1)

where u(t), y(t, x), γ(t, x) ∈ R are the system input, output
and external noise, respectively. The output function y(t, x)
represents the X-axis displacement at t when the X–Y axes
contacting position is x, as shown in Fig. 2(b).

Firstly, the linear block is assumed to be expanded by a
rational orthonormal basis series as follows

G(z−1, x) =

m∑
i=1

ρT(x)ξiLi(z
−1) = [L(z−1)⊗ ρ(x)]Tξ (2)

where ξ = [ξT
1, · · · , ξT

m]T and L(·) = [L1(·)T, · · · , Lm(·)T]T,
and L1(z−1), · · · , Lm(z−1) form a rational orthonormal basis
on the Hardy space H(T) [27]. For our model, they are set
as discrete Laguerre series detailed in Appendix. The term
ρT(x)ξi ∈ R, i = 1, 2, · · · ,m, is the associated coefficient
depending on the spatial position x. Specifically, ρ(·) : R 7→
Rq is a known vector function and ξi ∈ Rq a vector parameter
to be identified. .

Secondly, the nonlinear block can be described as

N(u(t), x) =

n∑
i=1

ψT(x)ηigi(u(t)) = [g(u(t))⊗ ψ(x)]Tη, (3)

where η = [ηT
1, · · · , ηT

n]T, g(·) = [g1(·)T, · · · , gn(·)T]T, gi(·) :
R 7→ R is a known nonlinear basis function and ψT(x)ηi ∈ R
is its associated coefficient depending on the spatial position x,
i = 1, · · · , n. Specifically, ψ(·) : R 7→ Rp is a known vector

function and ηi ∈ Rp a vector parameter to be identified.
Generally speaking, gi(·) can be chosen as polynomials,
radial basis functions (RBF), wavelets, etc. For simplicity,
we pick gi(·) as the polynomial series in our model. Both
the functions ρ(·) and ψ(·) can be selected as some basis
functions, e.g., polynomials, Jacobies, trigonometric functions,
or their combinations.

By Eqs. (2) and (3), Eq. (1) is equivalent to

y(t, x) = [L(z−1)⊗ ρ(x)]Tξ · [g(u(t))⊗ ψ(x)]Tη + γ(t, x). (4)

Direct calculation leads to

[L(z−1)⊗ ρ(x)]Tξ · [g(u(t))⊗ ψ(x)]Tη

= [L(z−1)⊗ ρ(x)]T ⊗ [g(u(t))⊗ ψ(x)]T[ξ ⊗ η]

= [L(z−1)⊗ ρ(x)⊗ g(u(t))⊗ ψ(x)]T[ξ ⊗ η],

thus Eq. (4) is equivalent to

y(t, x) = φT(z−1, u(t), x)θ + γ(t, x). (5)

where

φ(z−1, u(t), x) = L(z−1)⊗ ρ(x)⊗ g(u(t))⊗ ψ(x)

is a known vector function and

θ = ξ ⊗ η

is a vector parameter to be identified. For convenience, we
denote the noise-free output as

y(t, x) = φT(z−1, u(t), x)θ. (6)

Next, the modeling procedure is to establish an equation

ŷ(t, x) = φT(z−1, u(t), x)θ̂ (7)

where θ̂ = ξ̂⊗ η̂ is a valid estimation of θ for some vectors ξ̂
and η̂. This objective is usually impossible when noise appears,
so a more realistic model is

ŷ(t, x) = φT(z−1, u(t), x)

Nc∑
i=1

θ̂〈i〉, θ̂〈i〉 = ξ̂〈i〉 ⊗ η̂〈i〉 (8)

for an integer Nc ≥ 1. By using the similar arguments, the
model (8) is equivalent to

ŷ(t, x) =
∑Nc

i=1 Ĝ(z−1, x) · N̂(u(t), x),

Ĝ〈i〉(z−1, x) = [L(z−1)⊗ ρ(x)]Tξ̂〈i〉,

N̂ 〈i〉(u(t), x) = [g(u(t))⊗ ψ(x)]Tη̂〈i〉.

(9)

Such a model is called a multi-channel Hammerstein model
and Nc is the number of channels. The objective of this paper
is: using the given input u(t) with position x and the measured
output y(t, x) from Eq. (5) (or equivalently Eq. (1)), find valid
estimation θ̂〈i〉 = ξ̂〈i〉 ⊗ η̂〈i〉, i = 1, · · · , Nc, such that the
output ŷ(t, x) determined by the multi-channel Hammerstein
(8) (or equivalently (9)) matches y(t, x) of (6) in a certain
sense.

The approach to achieving the aforementioned objective is
developed in a rigorous manner as follows. Select an input
series U := [u(t1), u(t2), · · · , u(tN )] with temporal variable
sequence {t1, t2, · · · , tN}, and collect the corresponding NS-
sampling output spatial/temporal dataset with spatial variable
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sequence X := [x1, x2, · · · , xS ] for two integers N,S ≥ 1.
Thus, the dynamics (5) become

Y = Φθ + Υ (10)

with

Y := [y(t1, x1), y(t2, x1), · · · , y(tN , x1), · · · ,
y(t1, xS), y(t2, xS), · · · , y(tN , xS)]T,

Φ := [φ(z−1, u(t1), x1), · · · , φ(z−1, u(tN ), x1), · · · ,
φ(z−1, u(t1), xS), · · · , φ(z−1, u(tN ), xS)]T,

Υ := [γ(t1, x1), γ(t2, x1), · · · , γ(tN , x1), · · · ,
γ(t1, xS), γ(t2, xS), · · · , γ(tN , xS)]T.

Then two steps are applied: (i) find a valid estimation θ̂ of
θ through the data Φ and Y , depending on U and X; and
(ii) derive the multiple channel estimation θ̂〈i〉 = ξ̂〈i〉 ⊗ η̂〈i〉,
i = 1, · · · , Nc, from θ̂ to fit in the multi-channel Hammerstein
model (8).

To elaborate the two steps, we first define a function C(·)
such that

Θ̂ = C−1(θ̂) ∈ Rnp×mq, θ̂ = C(Θ̂) ∈ Rnpmq

where the vector θ̂ is the block column matrix of Θ̂, i.e.,
stacking the block column of Θ̂ on the top of each other.
Then, we give a result on the singular value decomposition
(SVD) of a matrix with rank deficiency.

Theorem 3.1: (Theorem 2.5.3 [28]) Let the singular
value decomposition (SVD) of the matrix Θ̂ ∈ Rs1×s2 with
rank(Θ̂) = k ≥ 1 be given as Θ̂ = WΣV T where

W = [w1, · · · , ws1 ] ∈ Rs1×s1 ,
V = [v1, · · · , vs2 ] ∈ Rs2×s2 (11)

are orthogonal matrix and

Σ = diag{σ1, · · · , σs} ∈ Rs1×s2 , s = min{s1, s2}
σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σs = 0.

Then, for 0 ≤ l ≤ k,

e〈l〉 :=

∥∥∥∥∥Θ̂−
l∑

i=1

σiwiv
T
i

∥∥∥∥∥
2

= σl+1.

N.B. if k = s, we denote σs+1 = 0 for the completeness of
notation.

The main technical result is stated in the following theorem.

Theorem 3.2: For the distributed system (1), given the
input data U = [u(t1), u(t2), · · · , u(tN )] and the sampling
positions X = [x1, x2, · · · , xS ], the following three assump-
tions hold:
• There exist integers N,S > 1, such that Φ and Y (see

Eq. (10)) obey the dynamics (5);
• For an arbitrary ε1 > 0, an estimation θ̂ for θ exists such

that ‖θ̂ − θ‖ ≤ ε1;
• For an arbitrary ε2 > 0, the matrix Θ̂ = C−1(θ̂) has an

SVD given in Theorem 3.1 such that e〈Nc〉 ≤ 1
mq ε2 with

Nc ≤ k;

Then, the output ŷ(t, x) given by Eq. (8) with

η̂〈i〉 = wi,

ξ̂〈i〉 = σivi, i = 1, · · · , Nc,
(12)

approaches y(t, x) of Eq. (6) in the sense of

‖ŷ(t, x)− y(t, x)‖ ≤ ‖φ(z−1, u(t), x)‖ε (13)

for ε = ε1 + ε2.

Proof: Denote

ϑ := θ̂ −
Nc∑
i=1

ξ̂〈i〉 ⊗ η̂〈i〉

and

ϑ = [ϑT
1, ϑ

T
2, · · · , ϑT

mq]T ∈ Rnpmq, ϑi ∈ Rnp.

From the definition of C(·), one has

C−1(ϑ) = C−1
(
θ̂
)
−

Nc∑
i=1

C−1
(
ξ̂〈i〉 ⊗ η̂〈i〉

)
= Θ̂−

Nc∑
i=1

η̂〈i〉(ξ̂〈i〉)T = Θ̂−
Nc∑
i=1

σiwiv
T
i

and hence

‖C−1(ϑ)‖ = e〈Nc〉 ≤ 1

mq
ε2.

By the definition of a matrix norm,

‖C−1(ϑ)‖ = sup
x6=0,x∈Rmq

‖C−1(ϑ)x‖
‖x‖

= sup
x6=0,x∈Rmq

‖[ϑ1, ϑ2, · · · , ϑmq]x‖
‖x‖

≥ ‖ϑi‖, ∀i = 1, · · · ,mq,

which implies

‖ϑ‖ =

mq∑
i=1

‖ϑi‖ ≤ mq‖C−1(ϑ)‖ ≤ ε2.

Next, it is ready to calculate that

‖ŷ(t, x)− y(t, x)‖
=

∥∥∥φT(z−1, u(t), x)
(∑Nc

i=1 ξ̂
〈i〉 ⊗ η̂〈i〉 − θ

)∥∥∥
≤ ‖φT(z−1, u(t), x)‖

∥∥∥∑Nc

i=1 ξ̂
〈i〉 ⊗ η̂〈i〉 − θ̂ + θ̂ − θ

∥∥∥
≤ ‖φT(z−1, u(t), x)‖(‖ϑ‖+ ‖θ̂ − θ‖)
≤ ‖φT(z−1, u(t), x)‖(ε1 + ε2).

The proof is thus completed.

To achieve a valid estimation θ̂ for θ, we can use least square
estimate (LSE) method [29] as follow

θ̂ = (ΦTΦ)−1ΦTY = Φ†Y, (14)

provided that the inverse (ΦTΦ)−1 exists. The LSE approach
can almost guarantee a sufficiently small estimation error ε1
in Theorem 3.2. The parameter Nc represents the number
of Hammerstein channels. The larger Nc, the smaller ε2 =
e〈Nc〉 = σNc+1 can be selected due to the monotonic order
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of σi. In particular, if Nc = k, one can pick ε2 = 0. These
observations are summarized in the following corollary.

Corollary 3.1: Let θ̂ calculated by Eq. (14) be the LSE of
θ in the model (5) . Suppose the model (8) (or (9)) is given
with Eq. (12) for Nc = k, and Θ̂ = C−1(θ̂) has an SVD given
in Theorem 3.1. Assume ‖φ(z−1, u(t), x)‖ is bounded and the
noise γ(t, x) is independent of the system input u(t). Then,
for any ε > 0, there exist integers N,S ≥ 1 such that,

‖ŷ(t, x)− y(t, x)‖ ≤ ε, (15)

with probability of one; denoted as

ŷ(t, x)
a.s.−→ y(t, x). (16)

Proof: Let a ≥ 0 as the bound of ‖φ(z−1, u(t), x)‖ and
ε1 = ε/a. Since the external noise γ(t, x) is independent of
the persistent exciting bounded regressor φ(z−1, u(t), x), the
LSE θ̂ satisfies θ̂

a.s.−→ θ [29]. That is, there exist integers
N,S ≥ 1 such that,

‖θ̂ − θ‖ ≤ ε1, (17)

with probability of one. As Nc = k, one has ε2 = mqe〈Nc〉 =
0 according to the SVD in Theorem 3.1. As a result of
Theorem 3.2, one has

‖ŷ(t, x)− y(t, x)‖ ≤ a(ε1 + ε2) = ε, (18)

also with probability of one.

Remark 3.1: When Li(z
−1) is selected as a stable transfer

function, the position x and the input u(t) are bounded, and
the functions ρi(x), gi(u), and ψi(x) are all bounded, one has
a bounded ‖φ(z−1, u(t), x)‖ = ‖L(z−1) ⊗ ρ(x) ⊗ g(u(t)) ⊗
ψ(x)‖.

Remark 3.2: Theorem 3.2 and Corollary 3.1 provide
the convergence conditions for the proposed modeling
method (14) and (12). By the analysis in Theorem 3.2, the
spatial variable x should appear in both the linear block
G(z−1, ·) and the nonlinear block N(·) of the distributed
Hammerstein model, otherwise the convergence and optimality
of the present Hammerstein modeling method can not be
guaranteed. This claim will also be verified by extensive
data-driven modeling experiments of cross-couplings on the
PI-stage afterwards. Note that Theorem 3.2 holds even in
the presence of colored external noises γ(t, x), if only it is
independent of the input signal u(t). By Theorem 3.2, the
required identification channel number (i.e., rank(Θ̂) = k) can
be determined in advance. But sampling data length should be
obtained by applications.

Remark 3.3: The SVD calculation for the proposed multi-
channel Hammerstein model is more time consuming than the
pseudo inversion calculation of Preisach model. Accordingly,
the convergence time of the former is longer than the latter,
but has higher precision, which is beneficial to reduce the
positioning control error of multi-axis piezoelectric stages.

Remark 3.4: In the low frequency, typically the linear
dynamics part of a piezoelectric system is the DC gain, and
the multi-value effect is due to the hysteresis nonlinearity.
However, in this work, we present an alternative method to
capture the coupled hysteresis and dynamics of piezoelectric
actuators with a Hammerstein model. One of the benefits
of this development is that the complex hysteresis model is
avoided. In this way, both the static nonlinearity and the linear
dynamics of the Hammerstein model contribute to describe the
hysteresis.

Remark 3.5: Although the cascaded architectures can ef-
fectively reduce the X-Y coupling effect, the present parallel
architecture in Fig. 2 is irreplaceable due to the following
advantages. i) the runout is easily measured and corrected
[30]; ii) if both axes have the same mechanical bandwidth
(like the present case), the testing direction can be chosen
arbitrarily [31]. So, it makes sense to investigate the coupling
effects. Note that the main contribution of this work lies in
the modeling of the coupling effects. Based on our previ-
ous control efforts [32], [33] on Hammerstein models, the
present work can be expected to extend to controller design.
Meanwhile, it is observed from extensive experiments that, the
cross-coupling caused by inter-axis friction, pressure and pre-
load forces have larger effects at lower exciting frequencies.

IV. MODELING EXPERIMENTS

First, the PI stage is fed with a periodical exciting volt-
age signal of u(t) = 4 + 5 sin(2πft)V with frequency
f ∈ {1, 5, 10, · · · , 130}Hz. It is used to describe periodical
exciting signals often encountered in real applications. For
each integral value of exciting frequency f , we sample NS
response signal sequence y(t, x) with t ∈ {t1, t2, · · · , tS}, S =
6000; x ∈ {x1, x2, · · · , xN} = {0, 30, · · · , 240}µm, N = 9.
Distinct evolution curves of cross-coupling effect are shown
in Fig. 5 at different contacting positions xi, i = 1, · · · , N ,
along increasing exciting frequency f . It is observed that the
cross-coupling effect varies at different contacting positions
and exciting frequencies. More precisely, the averages of the
cross-coupling effect percentage at f ∈ {1, 10, 35, 100}Hz
are 0.30%, 0.33%, 0.99%, and 6.34%, respectively, which are
non-negligible for high-precision positioning scenarios. Mean-
while, the cross-coupling effect is intensified along increasing
exciting frequency.

In the present distributed multi-channel Hammerstein
model (9), the parameters are picked as follows with m = 2,
n = 15, and q = p = 8. In particular, the linear basis series
of Li(z

−1), i = 1, 2, are selected as discrete-time Laguerre
basis detailed in Appendix with % = 0.1 and T = 2. Define a
set of polynomial and trigonometric functions

G = {ui, sin(ju), cos(ju) | i ∈ {0, 1, 2, 3, 7}, j ∈ {1, · · · , 5}}.

The selection of the nonlinear functions gi(u), i = 1, · · · , 15,
makes the complete set G. The spatial basis functions are
picked as polynomials

ψ(x) = ρ(x) = [1, x, · · · , x7]T.
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the percentage of cross-coupling magnitude to the exciting signal magnitude.

The Hammerstein channel number Nc = 2.
Take exciting frequency f = 10Hz for example, in the first

Hammerstein channel, with the aforementioned parameters,
the evolution of the coefficient functions ai(x) = ψT(x)η

〈1〉
i ,

i = 1, · · · , 15, along increasing position x are shown in
Fig. 6. It is observed that the magnitudes of coefficients
{a1, a2, a6, a10, a11} are much greater than the rest, which
implies that the formers are more important than the latter. So,
to reduce computational complexity and to avoid over-fitting,
it suffices to cut off the unnecessary bases associated to those
tiny coefficients. Analogously, the space-relevant coefficient
functions bi(x) = ρT(x)ξ

〈1〉
i , i = 1, 2 in the linear block

G(z−1, x) of the first Hammerstein channel are shown in
Fig. 7. The spatial distribution of the coefficients of both
N(·, x) and G(z−1, x) is thus exhibited, which helps reveal
the spatial evolution nature of the nonlinear cross-coupling
dynamics.
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The X-axis motional modeling performances of
{0µm; 1Hz, · · · , 100Hz} and {240µm; 1Hz, · · · , 100Hz}
are shown in Figs. 8 (a)–(h), respectively. Distinct cross-
coupling hysteresis dynamics with different X-positions
and exciting frequencies are observed. Again, along
with increasing frequency, the cross-coupling effect is
intensified, and the nonlinear modeling thus becomes more
challenging. Quantitatively speaking, the average magnitude
of {0µm; 1Hz, · · · , 100Hz} and {240µm; 1Hz, · · · , 100Hz}
are {0.98, 1.02, 1.57, 1.36}µm and {0.67, 0.80, 1.96,
1.97}µm, respectively. To give a more vivid comparison
of the modeling errors at different positions and exciting
frequencies, we demonstrate the modeling errors at two
contacting points {0µm, 240µm} along increasing exciting
frequencies {1Hz, 10Hz, 35Hz, 100Hz}. Evidently, the
Hammerstein modeling error keeps at a low level (less than
8%), and the effectiveness of the modeling scheme is thus
verified. Recall the PI stage resonant frequency of 140Hz,
we set the highest frequency of the exciting input signal as
100Hz.

Next, to show the merits of the proposed distributed Ham-
merstein model, we consider Preisach model [13] as term of
comparison in Fig. 8 as well. Due to its asymmetric hysteresis
description [34], the modified Preisach model is given in a
discrete form as

y(k) = p1u
3(k) + p2u(k) +

n∑
i=1

α(ri)γi[u(k)] + c, (19)

where a third-degree polynomial u(k) + u3(k) is utilized
to describe the asymmetric hysteresis, γi[u(k)] is the play
operator, n = 10 is picked as the number of the play operators,
α(ri) = `iri is the weighted coefficient of the threshold
ri = (i− 1)/n, i = 1, · · · , n, and [p1, p2, α(r1), · · · , α(rn), c]
are the coefficient vector. Let Ω = [ΩT

1, · · · ,ΩT
n]T with

Ωk = [u(k)3, u(k), γ1[u(k)], · · · , γn[u(k)], 1], be the input
vector, Y = [y(1), · · · , y(n)]T the output vector, and X =
[p1, p2, α(r1), · · · , α(rn), c] the coefficient vector, so Y =
ΩX . Accordingly, the estimated coefficient vector can be
calculated as X̂ = (ΩTΩ)−1ΩTY by LSE [29].

Evidently, it is observed in Fig. 8 that the modeling error
of the present Hammerstein model is much lower than that
of the Preisach model. Meanwhile, with increasing exciting
frequency, the modeling accuracy advantage of Hammerstein
model is intensified. To show the result more vividly, we
exhibit the modeling errors of the two models, respectively,
in frequency domain in Fig. 9 with f = 10 Hz. It is observed
that the modeling error e of the proposed Hammerstein model
is much lower than that of the Preisach model within the entire
bandwidth of [0, 300]Hz, especially within the bandwidth of
[25, 100]Hz. To make a quantitative comparison between the
two models, we exhibit the modeling errors of the Hammer-
stein and Preisach models in Fig. 10 with different exciting
frequencies and X–Y axes contacting positions. Therein,
compared with the Preisach model, the average modeling
error of the Hammerstein model with exciting frequency
f = {1, 10, 35, 100}Hz, has been decreased by {52%, 62%,
74%, 55%}, respectively. Especially, the scenarios of 1Hz and
100Hz are shown in Figs. 10(a) and (b), respectively. Here, the
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modeling error is calculated as e(t, x) := y(t,x)−ym(t,x)
ymax(t,x)−ymin(t,x)

,
the average modeling error e(x) is the average of e(t, x) over
time t, and the average modeling error e at each exciting
frequency f is the average of e(x) over positions x. The
effectiveness and superiority of the presented distributed Ham-
merstein method are thus verified. The advantage of the pro-
posed Hammerstein model lies in its approximating capacity of
both the nonlinearity and the spatial distribution of the cross-
coupling effect. Note that, since the Preisach model does not
effectively work with exciting frequency f = 35Hz, we just
show the modeling curve of Hammerstein model in Figs. 8(e)
and (f). Moreover, since inter-axis friction is intensified along
rising excitation signal frequency, the coupling effect increases
as well. Besides, the 100Hz coupling hysteresis in Figs. 8(g)
and (h) are more symmetric than the 1Hz one in Figs. 8(a)
and (b) . Due to the symmetry of the Preisach operators, the
modeling errors of the former is smaller than the latter. It is
still worth mentioning that, to avoid over/less fitting, the series
lengths of both linear and nonlinear blocks should be tuned
according to the real sampling data.

To put the cross-coupling investigation into a more general
scenario, we demonstrate the spatial/temporal evolution of
the cross-coupling along increasing spatial variable x and
temporal variable t in Fig. 11. Therein, we use an exciting
input signal u(t) = 4 + 5 sin(2πft) V with f = 1 and
100Hz, respectively. It is observed that the modeling error of
the distributed Hammerstein model (≤ 8% for f = 1Hz, and
≤ 2.2% for f = 100Hz) is much less than that of the Preisach
model (≤ 13% for f = 1Hz, and ≤ 3.8% for f = 100Hz).
The general virtue of the proposed distributed Hammerstein
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Fig. 10. Modeling errors of distributed Hammerstein model and Preisach
model at different X–Y axes contacting positions with 1Hz exciting input
signal are shown in (a), and with 100Hz in (b), respectively.

model is thus further verified.
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Fig. 11. (a),(b): Output heat maps of the Hammerstein and Presech models
of the cross-coupling effect, respectively; (c),(d) Error heat maps of the
Hammerstein and Presech models, respectively.

V. CONCLUSION

Cross-coupling has non-negligible adverse effects on the
positioning control precision of multi-axis piezoelectric mi-
cropositioning stages, which hinders their further applications
to nano-precision detection and manufacturing systems. In
this paper, a distributed multi-channel Hammerstein model is
proposed to approximate the spatial/temporal evolution of the
nonlinear dynamics of the cross-coupling hysteresis. Theoret-
ical analysis is provided to guarantee the convergence and
modeling accuracy of the proposed distributed Hammerstein
model. Finally, extensive modeling experiments are conducted
to show its feasibility and superiority.

APPENDIX

The selection of L(z−1) = [L1(z−1)T, · · · , Lm(z−1)T]T

follows the Laguerre functions given in [35], [36]. A slight
abuse of notation of mixing time domain signals and frequency
domain transfer function is used in Section III. Indeed, the
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real implementation of ζ(t) = L(z−1)µ(t) is given by the
following dynamic equation in time domain,

ζ(t+ 1) = Aζ(t) +Bµ(t)

where, for two parameters % and T ,

A =


ρ1 0 · · · 0

−ρ1ρ2−ρ3
T

ρ1 · · · 0
...

. . .
. . .

...
(−1)m−1ρm−2

2 (ρ1ρ2+ρ3)

Tm−1 · · · −ρ1ρ2−ρ3
T

ρ1


B =

[
ρ4 (−ρ2

T
)ρ4 · · · (−ρ2

T
)m−1ρ4

]T

and

ρ1 = exp(−%T ), ρ2 = T +
2

%
(ρ1 − 1),

ρ3 = −Tρ1 −
2

%
(ρ1 − 1), ρ4 =

√
2p

1− ρ1
%

.

REFERENCES

[1] G. Binnig and H. Rohrer. Scanning tunneling microscopy. Surface
Science, 126(1-3):236–244, 1983.

[2] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope.
Physical Review Letters, 56(9):930, 1986.

[3] A. Tay, W. K. Ho, and X. Wu. Real-time control of photoresist
extinction coefficient uniformity in the microlithography process. IEEE
Transactions on Control Systems Technology, 15(1):99–105, 2007.

[4] Y. Yamagata and T. Higuchi. Ultrahigh vacuum precise positioning
device utilizing rapid deformations of piezoelectric elements. Journal
of Vacuum Science and Technology, 1(8):89–91, 1990.

[5] R. Fukui, A. Torii, and A. Ueda. Robot actuated by rapid deforma-
tion of piezoelectric elements. In Proc. International Symposium on
Micromechatronics andHuman Science, pages 117–122, 2001.

[6] G.-Y. Gu, L.-M. Zhu, C.-Y. Su, H. D, and S. Fatikow. Modeling
and control of piezo-actuated nanopositioning stages: a survey. IEEE
Transactions on Automation Science and Engineering, 13(1):313–332,
2016.

[7] Y. K. Yong, S. R. Moheimani, B. J. Kenton, and K. K. Leang. High-
speed flexure-guided nanopositioning: Mechanical design and control
issues. Review of Scientific Instruments, 83(12):121101, 2012.

[8] S. Karunanidhi and M. Singaperumal. Design, analysis and simulation
of magnetostrictive actuator and its application to high dynamic servo
valve. Sensors and Actuators A: Physical, 157(2):185–197, 2010.

[9] Y. K. Yong, K. Liu, and S. O. R. Moheimani. Reducing cross-coupling
in a compliant XY nanopositioner for fast and accurate raster scanning.
IEEE Transactions on Control Systems Technology, 18(5):1172–1179,
2010.

[10] Y. Sun and J. H. L. Pang. AFM image reconstruction for deformation
measurements by digital image correlation. Nanotechnology, 17(4):933,
2006.

[11] Habibullah, H. R. Pota, I. R. Petersen, and M. S. Rana. Creep,
hysteresis, and cross-coupling reduction in the high-precision positioning
of the piezoelectric scanner stage of an atomic force microscope. IEEE
Transactions on Nanotechnology, 12(6):1125–1134, 2013.

[12] O. M. El Rifai and K. Youcef-Toumi. Coupling in piezoelectric tube
scanners used in scanning probe microscopes. In Proc. Amer. Control
Conf., volume 4, pages 3251–3255, 2001.

[13] P. Ge and M. Jouaneh. Generalized preisach model for hysteresis nonlin-
earity of piezoceramic actuators. Precision Engineering, 20(2):99–111,
1997.

[14] R. Bouc. Forced vibration of mechanical systems with hysteresis. In
Proc. Conf. Nonlinear Oscillation, Prageue, pages 32–39, 1967.

[15] M. Goldfarb and N. Celanovic. Modeling piezoelectric stack actuators
for control of micromanipulation. IEEE Transactions on Control Systems
Technology, 17(3):69–79, 1997.

[16] J.-W. Wu, J.-J. Chen, M.-L. Chiang, J.-T. Yu, and L.-C. Fu. Design
and control of phase-detection mode atomic force microscopy for
reconstruction of cell contours in three dimensions. IEEE Transactions
on Nanotechnology, 13(4):639–649, 2014.

[17] M. S. Rana, H. R. Pota, and I. R. Petersen. Nonlinearity effects reduction
of an afm piezoelectric tube scanner using mimo mpc. IEEE/ASME
Transactions on Mechatronics, 20(3):1458–1469, 2015.

[18] Y.-Q Xie, Y.-H Tan, and R.-L Dong. Nonlinear modeling and decoupling
control of XY micropositioning stages with piezoelectric actuators.
IEEE/ASME Transactions on Mechatronics, 18(3):821–832, 2013.

[19] Y.-D. Qin, B. Shirinzadeh, Y.-L. Tian, L. Yan, D.-W. Zhang, and U. Bha-
gat. Design and computational optimization of a decoupled 2-DOF
monolithic mechanism. IEEE/ASME Transactions on Mechatronics,
19(3):872–881, 2014.

[20] U. Bhagat, B. Shirinzadeh, L. Clark, Y.-D. Qin, Y.-L. Tian, and D.-W.
Zhang. Experimental investigation of robust motion tracking control
for a 2-DOF flexure-based mechanism. IEEE/ASME Transactions on
Mechatronics, 19(6):1737–1745, 2014.

[21] R.-F. Fung, Y.-L. Hsu, and M.-S. Huang. System identification of a dual-
stage XY precision positioning table. Precision Engineering, 33:71–80,
2009.

[22] S. K. Das, H. R. Pota, and I. R. Petersen. Multivariable negative-
imaginary controller design for damping and cross coupling reduction
of nanopositioners: A reference model matching approach. IEEE/ASME
Transactions on Mechatronics, 20(6):3123–3134, 2015.

[23] Q. Xu. Identification and compensation of piezoelectric hysteresis
without modeling hysteresis inverse. IEEE Transactions on Industrial
Electronics, 60(9):3927–3937, 2013.

[24] C. Qi, H.-T. Zhang, and H.-X. Li. A multi-channel spatio-temporal
Hammerstein modeling approach for nonlinear distributed parameter
processes. Journal of Process Control, 19:85–99, 2009.

[25] C.-X. Li, G.-Y Gu, M.-J Yang, and L.-M Zhu. Design, analysis
and testing of a parallel-kinematic high-bandwidth XY nanopositioning
stage. Review of Scientific Instruments, 84(12):125111, 2013.

[26] L.-J. Lai, G.-Y. Gu, and L.-M. Zhu. Design and control of a decoupled
two degree of freedom translational parallel micro-positioning stage.
Review of Scientific Instruments, 83(4):045105, 2012.

[27] P. Duren. Theory of Hp-Spaces. New York: Academic Press, 1970.
[28] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns

Hopkins University Press, 3rd edition, 1996.
[29] L. Ljung. System Identification. Englewood Cliffs, NJ: Prentice-Hall,

2nd edition, 1999.
[30] Y. Li and Q. Xu. Design and analysis of a totally decoupled flexure-

based XY parallel micromanupulator. IEEE Transactions on Robotics,
25(3):645–657, 2009.

[31] G. Schitter, P. J. Thurner, and P. K. Hansma. Design and input-shaping
control of a novel scanner for high-speed atomic force microscopy.
Mechatronics, 5–6:282–288, 2008.

[32] G.-Y. Gu, C.-X. Li, L.-M. Zhu, and C.-Y. Su. Modeling and identifica-
tion of piezoelectric-actuated stages cascading hysteresis nonlinearity
with linear dynamics. IEEE/ASME Transactions on Mechatronics,
21(3):1792–1797, 2016.

[33] C.-X. Li, G.-Y. Gu, L.-M. Zhu, and C.-Y. Su. Odd-harmonic repetitive
control for high-speed raster scanning of piezo-actuated nanopositioning
stages with hysteresis nonlinearity. Sensors & Actuators: A. Physical,
244:95–105, 2016.

[34] G.-Y. Gu, L.-M. Zhu, and C.-Y Su. Modeling and compensation of
asymmetric hysteresis nonlinearity for piezoceramic actuators with a
modified Prandtl–Ishlinskii model. IEEE Transactions on Industrial
Electronics, 61(3):1583–1595, 2014.

[35] C. C. Zervos and G. A. Dumont. Deterministic adaptive control based
on laguerre series representation. International Journal of Control,
48(6):2333–2359, 1988.

[36] G. A. Dumont, C. C. Zervos, and G. L. Pageau. Laguerre-based adaptive
control of pH in an industrial bleach plant extraction stage. Automatica,
4(781–787), 26.

Hai-Tao Zhang (M’07–SM’13) received the B.E.
and Ph.D. degrees from the University of Science
and Technology of China, Hefei, China, in 2000
and 2005, respectively. During January–December
2007, he was a Postdoctoral Researcher with the
University of Cambridge, Cambridge, U.K. Since
2005, he has been with Huazhong University of
Science and Technology, Wuhan, China, where he
was an associate professor from 2005 to 2010 and
has been a full professor since 2010. His research
interests include swarming intelligence, model pre-

dictive control, and multi-agent systems control. He is an associate editor of
IEEE Transactions on Circuits and Systems II and Asian Journal of Control.



1083-4435 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2018.2870864, IEEE/ASME
Transactions on Mechatronics

10

Bo Hu received his Bachalor’s degree from Hefei
University of Technology in 2015 and got his Mas-
ter’s degree of Engineering from Huazhong Univer-
sity of Science and Technology in 2017. His research
interests focused on nonlinear hysteresis modeling
and control.

Linlin Li received the B.E. degree (with honors) in
Mechanical design, manufacturing and automation
from Shandong University, Jinan, China, in 2014.
She is currently working toward the Ph.D. degree
in mechanical engineering at Shanghai Jiao Tong
University, Shanghai, China. Her research interests
include mechatronics, modeling and control of high-
bandwidth nanopositioning stages and Atomic Force
Microscope.

Zhiyong Chen (S’03-SM’13) received the B.E. de-
gree from the University of Science and Technology
of China, and the M.Phil. and Ph.D. degrees from
the Chinese University of Hong Kong, in 2000, 2002
and 2005, respectively. He worked as a research
associate at the University of Virginia during 2005-
2006. He joined the University of Newcastle, Aus-
tralia, in 2006, where he is currently a professor. He
is also a Cheung Kong Chair Professor with Central
South University, Changsha, China. His research
interests include nonlinear systems and control, bi-

ological systems, and multi-agent systems. He is/was an associate editor of
Automatica, IEEE Transactions on Automatic Control and IEEE Transactions
on Cybernetics.

Dongrui Wu (S’05-M’09-SM’14) received the PhD
degree in electrical engineering from the University
of Southern California in 2009. He was a Lead
Researcher at GE Global Research, and Chief Sci-
entist of several startups. He is now a professor
in the School of Automation, Huazhong University
of Science and Technology, Wuhan, China. His
research interests include affective computing, brain-
computer interface, computational intelligence, and
machine learning. He received the IEEE CIS Out-
standing PhD Dissertation Award in 2012, the IEEE

Transactions on Fuzzy Systems outstanding paper award in 2014. He is an
associate editor of IEEE Transactions on Fuzzy Systems, IEEE Transactions
on Human-Machine Systems, and IEEE Computational Intelligence Magazine.

Bowen Xu received his B.S. degree from Xid-
ian University, Xi’an, China, in 2016. He is cur-
rently working toward the Ph.D degree in School of
Automation, Huazhong University of Science and
Technology, Wuhan, China. He was an outstanding
reviewer of Asian Journal of Control in 2017. His
research interests include multi-agent systems con-
trol.

Xiang Huang received the B.S. degree from Wuhan
University of Science and Technology, Wuhan,
China, in 2015. He is currently working toward
the Ph.D. degree at the School of Automation,
Huazhong University of Science and Technology,
Wuhan, China. His research interests include mod-
eling and control of hysteresis.

Guoying Gu (S’10–M’13) received the B.E. and
Ph.D. degrees from Shanghai Jiao Tong University,
Shanghai, China, in 2006 and 2012, respectively.
Since October 2012, he has worked at Shanghai
Jiao Tong University, where he is currently a pro-
fessor. He was as a Humboldt Postdoc Fellow at
University of Oldenburg, Oldenburg, Germany. He
was a Visiting Scholar at Massachusetts Institute of
Technology, National University of Singapore and
Concordia University. His research interests include
soft robotics, bioinspired robot design and motion

control, smart materials actuators and sensors, and additive manufacturing
with soft materials. He is the winner of multiple awards including Young
Cheung Kong Scholar of the Chinese Ministry of Education, National Science
Fund for Excellent Young Scholars, the first prize of natural science of
Ministry of Education. Now he serves as Associate Editor of International
Journal of Advanced Robotic Systems.

Ye Yuan (M’13) received the B.Eng. degree (Vale-
dictorian) from the Department of Automation,
Shanghai Jiao Tong University, Shanghai, China,
in 2008, and the M.Phil. and Ph.D. degrees from
the Department of Engineering, University of Cam-
bridge, Cambridge, U.K., in 2009 and 2012, re-
spectively. He has been a Full Professor at the
Huazhong University of Science and Technology,
Wuhan, China since 2016. Prior to this, he was a
Postdoctoral Researcher at UC Berkeley, a Junior
Research Fellow at Darwin College, University of

Cambridge. His research interests include system identification and control
with applications to cyber-physical systems.


