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ABSTRACT
The repetitive control (RC) has been employed for high-speed tracking control of nanopositioning stages due to its abilities of precisely
tracking periodic trajectories and rejecting periodic disturbances. However, in digital implementation, the sampling frequency should be
integer multiple of the tracking frequency of the desired periodic trajectory. Otherwise, the rounding error would result in a significant
degradation of the tracking performance, especially for the case of high input frequencies. To mitigate this rounding effect, the fractional
repetitive control (FRC) technique is introduced to control the nanopositioning stage so as to precisely track high-frequency periodic inputs
without imposing constraints on the sampling frequency of the digital control system. The complete procedure of controller design and
implementation is presented. The techniques to deal with the problems of non-minimum phase system and fractional delay points number are
described in detail. The proposed FRC is plugged into the proportional-integral control, and implemented on a custom-built piezo-actuated
nanopositioning stage. Validation experiments are conducted, and the results show that the tracking errors caused by the rounding effect
in the traditional RC approach are almost completely eliminated, when tracking sinusoidal waveforms with frequencies from 1000 Hz to
1587.3 Hz under the sampling frequency of 50 kHz, where the fractional parts being rounded vary from 0 to 0.5.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5088673

I. INTRODUCTION

Piezo-actuated nanopositioning stages are the important com-
ponents of the nanomanufacturing equipment and nanomeasure-
ment instruments, such as nanolithography facilities1 and scanning
probe microscopes.2 A typical piezo-actuated nanopositioning stage
is composed of the piezoelectric actuator, compliant mechanism,
displacement sensor, and control system.3 To achieve high-speed
and high precision operations, the stage mainly faces two chal-
lenges. The first challenge is the inherent hysteresis nonlinearity of
the piezoelectric actuator.4–6 It is amplitude-dependent and rate-
dependent, which can cause the positioning errors up to 15% of the
moving range in the open-loop control.7 The second challenge is
the lightly damped resonant modes of the compliant mechanism.4,5

They can be easily excited during high-speed tracking and thus can
cause vibrations and large positioning errors. These two problems
are usually addressed independently.8–11 In fact, they are commonly

coupled together, especially in high-speed operations, which makes
the control design complex and challenging.12,13

In many real-time applications, the nanopositioning stages
are configured to fulfill the periodic operations. Take atomic force
microscope as an example, the general raster/sinusoidal scanning
motions are realized with the periodic triangular/sinusoidal trajec-
tory of one lateral axis and the corresponding staircase trajectory
of the other one lateral axis,4,14–18 in which the primary objec-
tive is to minimize the tracking errors of the periodic trajecto-
ries.12,13 Nowadays, with its remarkable performances of tracking
periodic trajectories and rejecting periodic disturbances, the repet-
itive control (RC) has attracted researchers’ attention in such appli-
cations. In digital implementation, as an internal model control
method, the RC can be expressed as 1/(zN − 1) (N is the num-
ber of delay points in one period of the reference trajectory), which
generates infinite gains at the fundamental frequency and its har-
monics.19 In order to improve the robustness of the RC, the phase
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compensator and low-pass filter are incorporated into the RC to
obtain a better tracking performance.20–22 It is found that when the
nanopositioning stage operates in periodic applications, the hys-
teresis and vibration induced tracking errors are also periodic.12,23

Therefore, the RC provides a solution to compensate for both the
hysteresis and the dynamics effects of the piezo-actuated nanopo-
sitioning stages. In our most recent work, it is shown that the hys-
teresis nonlinearity mainly affects the system at the odd-harmonics
of the input signals and an odd-harmonic RC is then developed.12

Despite the faster convergence and lower computation cost of the
odd-harmonic RC, the even-harmonic tracking errors still exist and
are even amplified, which leads to the relatively larger tracking errors
as compared with the conventional RC.24 Besides, it is worthy of
mentioning that the convergence time of the RC is slightly longer
than that of the odd-harmonic RC, not the two times in theory dur-
ing high-speed operations. In this sense, the RC is the promising
technique for precision tracking control of nanopositioning stages
with high input frequencies.

In practical applications, there exists a physical limitation for
the implementation of the RC technique. It is obvious that the num-
ber of delay points in the RC technique should be a positive integer,
which implies that the sampling frequency must be integer mul-
tiple of the tracking frequency of the desired trajectory. However,
this rigorous condition cannot be always satisfied in some specific
applications. One typical case is the Lissajous trajectory tracking
application,25,26 where the ratio of the delay points numbers of the
two lateral axes is (2M − 1)/2M (M > 1 is an integer) to guaran-
tee the Lissajous trajectory returns to its starting point. In such case,
it would cause a fractional delay points number for one of the two
lateral axes, especially with high input frequencies, which hinders
the application of the RC technique. Although one can choose a
sampling frequency that is a multiple of the least common multi-
ple of the individual scanning axis frequencies to ensure that the
numbers of the delay points for the two axes are both integer, it
requires a much higher sampling frequency. Additionally, this strat-
egy requires the remodeling of the system and redesign of the con-
troller, which is quite inconvenient. Another simple solution to this
problem is rounding the number of fractional delay points to the
nearest integer,27 i.e., N = round(N̂) is employed to implement
the RC. Although this rounding errors can be ignored for low fre-
quency inputs, it would lead to significant tracking errors in high-
speed tracking tasks. It will be shown in this work that for high-
speed tracking applications, the rounding effect would result in the
tracking errors up to 5%, which degrades the tracking performance
severely.

In this article, the idea of fractional repetitive control (FRC) is
introduced to control the nanopositioning stage so as to precisely
track high frequency periodic inputs without imposing constraints
on the sampling frequency of the digital control system. Although
the FRC technique was recently developed in the field of power-
conditioning systems,27–30 to our best knowledge, this is the first
attempt at applying the FRC to control the nanopositioning stage,
which is a non-minimum phase system with complicated hysteresis
nonlinearity.

The remainder of this article is arranged as follows. In Sec. II,
the FRC design and implementation are presented. In Sec. III, the
experimental setup and controller parameters design are presented.
The effectiveness of the FRC technique on high-speed tracking con-
trol is demonstrated by comparative experiments in Sec. IV. The
conclusion is summarized in the last section.

II. CONTROLLER DESIGN
A. Fractional repetitive control design

As investigated in the previous works,12,23 the nanoposition-
ing stage can be described as a time-invariant linear plant with a
bounded input disturbance resulting from the hysteresis nonlinear-
ity, and for a periodic reference input, this disturbance is also peri-
odic. Hence, the RC can be designed based on the linear dynamics to
account for the tracking errors caused by both the hysteresis distur-
bance and the vibrational dynamics. It avoids the construction of the
complicated hysteresis model and its inversion. It should be noted
that since the model of the nanopositioning stage is a non-minimum
phase system with complicated hysteresis nonlinearity, the RC tech-
nique developed in our previous work12 is employed as the prototype
of the FRC, which is different from those employed in other applica-
tions.28,29 The block diagram of the FRC is shown in Fig. 1, in which
the fractional repetitive controller CFRC(z) is plugged into the base-
line feedback controller Cf (z). The items yd(k), ya(k), and e(k) are
the desired reference trajectory, the actual output displacement, and
the corresponding tracking error, respectively. The fractional repet-
itive controller CFRC(z) is composed of the repetitive loop z−N̂ , the
control gain kc, the phase compensator zm, and the closed-loop sys-
tem inversion Ci(z). N̂ = fs/fn is termed as the delay points number,
where f n and f s denote the tracking frequency and the sampling fre-
quency, respectively. To improve the control robustness, there is a
low pass filter Q(z) = (az + b + az−1)i incorporated in the repeti-
tive part, where the parameters satisfy the condition 2a + b = 1, and
i is an integer to adjust the bandwidth of the low-pass filter. The

FIG. 1. The block diagram of the con-
trol system with the plugged-in fractional
repetitive control.
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closed-loop system inversion Ci(z) satisfies

C−1
i (z) =

G(z)Cf (z)
1 + G(z)Cf (z)

. (1)

Due to the non-minimum phase nature of the nanopositioning
stage, the inversion Ci(z) cannot be derived directly. Therefore, the
zero-phase-tracking-error method31 is employed to calculate the
closed-loop system inversion. For convenience, Eq. (1) is rewritten
as

Ci
−1(z) = z−d

Bu(z)Bs(z)
A(z) , (2)

where Bu(z) contains all the zeros that locate out of the unit circle
in z-plane, Bs(z) contains the other zeros, A(z) is the denominator
of the close-loop system transfer function, and d denotes the relative
degree of Ci

−1(z). The approximate closed-loop system inversion
has the following expression:

Ci(z) = z−(nc+nu)
Bf (z)A(z)
Bs(z)β

, (3)

where

β ≥ max
ω∈[0,π)

(∣Bu(e−jω)∣
2) . (4)

In this work, the parameter β is set as β = ∣β0∣ + ∣β1∣ + ∣β2∣ + ⋯,
where βi, i = 1, 2, . . . are the corresponding coefficients of Bu(z).19

Bf (z) is obtained by flipping the coefficients of Bu(z), and nu repre-
sents the order of the unstable transfer function Bu(z), and nc is an
integer introduced to keep the controller causal for physical imple-
mentation. The order of the phase compensator zm in Fig. 1 is set as
m = d + nc.

Because the item zm is physically unrealizable, this item is inte-
grated into the repetitive loop for real-time implementation. The
equivalent control diagram of the FRC is shown in Fig. 2.

B. Fractional repetitive control implementation
Since this work focuses on the rounding effect caused by the

nonsynchronized sampling, the fractional delay points number N̂
is considered. The corresponding fractional delay z−N̂ is physi-
cally unrealizable in real applications. To address this problem, the
Lagrange interpolating approach is employed to approximate the
fractional part of z−N̂ .27–29 Let N∗ = round(N̂−n/2) and α = N̂−N∗

denote the major integer part and the residual fractional part of
the delay points number, respectively, where n is the order of the
Lagrange interpolating. Then, the fractional delay part z−α can be
approximately expressed as

z−α ≈
n
∑
k=0

Akz
−k, (5)

FIG. 2. The equivalent block diagram of the fractional repetitive control for physical
implementation.

FIG. 3. The implementation of the delay loop in the FRC with the Lagrange
interpolating approach.

where

Ak =
n
∏

i=0, i≠k

α − i
k − i , k = 0, 1, 2⋯n (6)

are the Lagrange coefficients. Thus, the complete fractional delay
part has the expression

z−N̂ ≈ z−N
∗

× z−α ≈ z−N
∗

×
n
∑
k=0

Akz
−k. (7)

The block diagram of the realizable fractional delay loop within the
FRC is illustrated in Fig. 3, where the fractional part is approximated
by sum of the integer delay branches for practical implementation.

Basically, the higher the Lagrange interpolation order is, the
more accurate the approximated fractional delay part will be.
Normally, the Lagrange interpolation order is not greater than
5, because a higher order would result in the unwanted oscil-
lations of the interpolants.32 From the viewpoint of digital sig-
nal processing, the Lagrange interpolating may be regarded as the

FIG. 4. The magnitude and phase responses of the fractional delay with different
interpolation orders.
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finite impulse response (FIR) low-pass filtering. The magnitude and
phase response of the equivalent FIR filters for n = 1, 2, 3, and 4
are compared for a specific fractional delay α = 0.3 in Fig. 4. As can
be seen, the magnitude and phase responses for different orders are
nearly same in the frequency band below 3000 Hz. Comparatively,
the responses with n = 3 and n = 4 exhibit better high-frequency per-
formance. In this work, n is selected as 3 since it is adopted in most
applications.28,29

III. EXPERIMENTAL SYSTEM DESCRIPTION
A. Experimental setup

To verify the effectiveness of the developed FRC technique, one
custom-built piezo-actuated flexible-kinematic two-dimensional
nanopositioning stage is employed as the testing platform in this
work. As shown in Fig. 5, this experimental setup mainly consists
of four components, which are the stage, the dSPACE control mod-
ule, the voltage amplifier, and the gauging module. The workspace
of the stage is 11.2 µm × 11.6 µm, the first-order resonant frequency
is over 13.6 kHz, and the maximum cross-coupling between the
X- and Y-axes is lower than 0.52%. Because the stage has nearly
decoupled performance, the Y-axis of the stage is employed as the
testing axis. The dSPACE-DS1103 control module is equipped to
generate the reference signals and capture the displacement signals
of the stage for close-loop control. This control module is config-
ured with digital to analog converters (DACs) and analog to digital
converters (ADCs) for transferring the signals. The DACs could
generate the analog control voltage to the voltage amplifier for gen-
erating the actuation voltage in the range of 0–200 V. The mea-
surement module could capture the displacements signals from
the capacitive sensor and transfer it to the ADCs in the range of
−1 V to 1 V. Two capacitive sensors (Probe 2823 and Gauging
Module 8810 designed by MicroSense, US, range of ±25 µm, res-
olution < 1 nm − rms) are employed to measure the real-time
displacements signals of the end-effector of the stage. The sam-
pling frequency of the dSPACE control is set as 50 kHz. For more

FIG. 5. The experimental setup.

information of the experimental setup, readers could refer to our
previous work.33

B. System identification
With the objective of identifying the system dynamics and elim-

inating the hysteresis influence, the band-limited white noise signals
with low amplitude are utilized to excite the stage. The actuation
noise signals and the actual displacement signals are captured simul-
taneously, which are utilized to identify the dynamics of the stage
with the help of the MATLAB system identification ToolBox. The
ARX algorithm and the least square method are employed in the
identification process. It is worthy of mentioning that the higher the
order of the identified dynamics is, the more accurate the identified
model is. However, high order model would result in great complex-
ity in controller design and implementation, especially in inversion
calculation in the proposed control scheme. Hence, with the trade-
off of the identification accuracy and computational complexity, the
system dynamics is determined as

G(z)= − 5.662e−5z5 + 0.0005z4 + 0.0038z3 + 0.0509z2 + 0.1149z+ 0.1032
z6− 0.4354z5 + 1.013z4− 0.6771z3+ 0.3096z2+ 0.1197z

.

(8)
With the spectrum analysis, the experimental results and the

identified model are compared in Fig. 6. It can be seen that the iden-
tified system dynamics could describe the stage precisely in a wide
range of frequencies, which bases the following controller design.

C. Controller parameters design
and performance evaluation

Owing to its easy implementation, the baseline feedback
controller Cf (z) is chosen as the widely employed discrete-time
proportional-integral (PI) controller. The PI controller has the
transfer function of Cf (z) = kp + kiTs

z−1 , where kp and ki are the pro-
portional and integral gains, respectively. The two control gains are

FIG. 6. The comparison of the experimental results with the identified model.
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determined as kp = 0.1, ki = 6000, with the trial and error method
by experiments. Based on the identified dynamics G(z), the closed-
loop system inversion Ci(z) can be determined according to Eq. (3),
where d, nc, and nu are calculated as 1, 5, and 5, respectively. There-
fore, the order of phase compensator zm is deduced as 6. The param-
eters of the low-pass filter Q(z) are set as a = 0.25, b = 0.5, and
i = 1. The control gain kc is optimized as 1 following the simulation
results.

To evaluate the performance of the FRC, the sensitivity func-
tions under different control schemes are investigated for tracking a
specific periodic trajectory. It is worthy of noting that when N̂ is an
integer, the FRC is reduced to the RC. To demonstrate the advan-
tages of the FRC over the RC, the basic control parameters of the
RC are chosen the same as those of the FRC in Fig. 1, except for the
number of delay points. Since the main focus of this work is the high-
speed tracking control in the case of nonsynchronized sampling, the
tracking frequency of 1100 Hz is studied in detail, which provides
the fractional delay points number N̂ ≈ 45.45. In this case, the two
delay points number of the FRC are N∗ = 44, α = 1.45, while the
delay points number of RC is 45 for implementation. The sensitiv-
ity functions of PI + FRC, PI + RC, and PI control are compared
in Fig. 7. It is shown clearly that both the PI + RC scheme and
the PI + FRC scheme can improve the tracking performance of the
stage, as compared with the PI scheme. The rounding effect of the
RC technique results in the reduction of rejection capability from
−45 dB to −22 dB at the frequency of 1100 Hz, as compared with the
FRC technique. This degradation of rejection capability also occurs
at the harmonic frequencies. Although it can still reduce the track-
ing errors to some extent, the RC technique could not mitigate the
tracking errors at the tracking frequency of 1100 Hz completely.
Meanwhile, it can be observed that the larger deviation between
the target tracking frequency and the rounded tracking frequency,
the larger the tracking errors will be. By contrast, the approximated
PI + FRC scheme exhibits an excellent tracking errors rejection
ability at the target tracking frequencies.

FIG. 7. The comparison of sensitivity functions of different control schemes for the
tracking frequency of 1100 Hz.

IV. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the proposed PI + FRC

scheme on mitigating the rounding effect, experiments of tracking
sinusoidal trajectories with the amplitude of 1.25 µm and differ-
ent frequencies are carried out on the experimental nanopositioning
stage. The PI and PI + RC control schemes are chosen for com-
parisons. To quantitatively evaluate the tracking performance, the
maximum tracking errors emax and the root-mean-square tracking
errors erms defined as

emax = max
t∈(0,10T]

∣yd(t) − ya(t)∣, (9)

erms =
¿
ÁÁÀ 1

10T ∑
t∈(0,10T]

[ yd(t) − ya(t)]2. (10)

All the experimental results are summarized in Table I. It is observed
that the tracking errors of the PI + RC scheme with the 100 Hz input
frequency, which do not suffer from the rounding effect, are a littler
smaller than those of the PI + RC scheme with the 150 Hz input fre-
quency, but similar to those of the PI + FRC scheme with same input
frequency. These results indicate that the tracking errors caused by
the rounding effect of the RC are very low for the low input fre-
quency. However, it is found that the tracking errors of the PI + RC
scheme with the 1000 Hz and 1562.5 Hz input frequencies, both of
which do not suffer from the rounding effect, are much smaller than
those of the PI + RC scheme with the 1100 Hz, 1200 Hz, 1300 Hz,
1400 Hz, and 1500 Hz input frequencies, but similar to those of
the PI + FRC scheme with the same input frequencies. When the
input frequency goes from 1000 Hz to 1500 Hz, the tracking errors
of the PI + FRC scheme grow incrementally. However, the tracking
errors of the PI + RC scheme do not exhibit a regular tendency due
to the irregularity of the rounding errors in the chosen frequencies.
These results indicate that the tracking errors caused by the round-
ing effect of the RC are significant for the high input frequency, and
these errors can be almost eliminated by the FRC.

In particular, the experiments of tracking sinusoidal signals
with the frequencies near 1562.5 Hz (N = 32) are further conducted
and investigated in detail. Two specific cases of 1587.3 Hz (N̂ = 31.5)
and 1538.5 Hz (N̂ = 32.5) are taken into account. The number of
delay points N for RC technique are set as 32 for both two cases.
The integer delay points numbers for the FRC scheme N̂ are set as
30 and 31, respectively, while the fractional parts of FRC scheme
are both determined as 1.5. The tracking results of the PI control,
PI + RC, and PI + FRC schemes for the two frequencies are shown
in Figs. 8(A) and 8(B), respectively. From the tracking errors results
in Figs. 8(A-b) and 8(B-b), it is obvious that, compared with the PI
control, both the RC and FRC schemes improve the tracking per-
formance significantly. Due to the rounding effect, the maximum
tracking errors of the PI + RC scheme in Fig. 8(A-c) in steady state
are about 0.1298 µm, which are much larger than the results of
0.0149 µm corresponding to the input frequency of 1562.5 Hz as
shown in Table I that does not suffer from the rounding effect. With
the consideration of the fractional delay part, the tracking errors of
the RC are reduced about 88% and the rounding effect is almost mit-
igated, which validated the approximation accuracy of the Lagrange
interpolating method used in the FRC. Also, it can be observed that
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TABLE I. The tracking errors under different control schemes for different tracking frequencies (where N and N̂ are the
numbers of delay points in the repetitive loop).

Frequency PI PI + RC PI + FRC

(Hz) emax (µm) erms (µm) emax (µm) erms (µm) N emax (µm) erms (µm) N̂

100 0.4210 0.2854 0.0052 0.0013 500 . . . . . . . . .
150 0.6225 0.4230 0.0062 0.0025 333 0.0050 0.0013 333.33
1000 1.4330 1.0130 0.0097 0.0038 50 . . . . . . . . .
1100 1.4313 1.0084 0.0798 0.0514 45 0.0103 0.0044 45.45
1200 1.4292 1.0090 0.0667 0.0425 42 0.0103 0.0051 41.66
1300 1.4259 1.0090 0.0926 0.0622 38 0.0111 0.0059 38.46
1400 1.4215 1.0054 0.0670 0.0430 36 0.0119 0.0067 35.71
1500 1.4169 0.9988 0.0798 0.0523 33 0.0143 0.0077 33.33
1562.5 1.4101 1.0012 0.0149 0.0078 32 . . . . . . . . .

the convergence speed of the PI + FRC scheme is as fast as that of the
PI + RC scheme from Fig. 8.

The other control objective of the RC technique is to mitigate
the complicated hysteresis nonlinearity under periodic operations,
which is usually coupled with the linear dynamics of the mecha-
nism. Commonly, such nonlinearity becomes more severe with the
increase of input frequency. Again, the tracking frequencies near
1562.5 Hz are considered, where the severe hysteresis nonlinear-
ity in the open-loop control is shown clearly in Fig. 9, for the
input frequencies of 1587.3 Hz and 1538.5 Hz. To better verify the

effectiveness of the FRC to compensate for both the hysteresis and
the dynamics effects of the piezo-actuated nanopositioning stages
in the case of nonsynchronized sampling, the relations between the
actual and desired displacements under different control schemes
for tracking sinusoidal waveforms with frequencies of 1587.3 Hz
and 1538.5 Hz are plotted in Figs. 9(a) and 9(b), respectively. It
can be seen that, with only PI control, the nonlinearity effect is
still very serious. On the other hand, although the periodic tracking
errors caused by the hysteresis and linear dynamic effects are mit-
igated greatly with the RC technique, they cannot be compensated

FIG. 8. The sinusoidal trajectory track-
ing results for different control schemes:
(A) the tracking frequency of 1587.3 Hz;
(B) the tracking frequency of 1538.5 Hz;
(a) the overall of the tracking results;
(b) the tracking errors; (c) the tracking
errors in the steady state.
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FIG. 9. The relations between the actual
and desired displacements under dif-
ferent control schemes: (a) 1587.3 Hz;
(b) 1538.5 Hz.

completely due to the inherent rounding effect. By contrast, with the
FRC technique, the residual nonlinear effect is well eliminated, and
the input-output relation of the system is almost linear. These results
demonstrate that the FRC can well compensate for the hysteresis
and dynamics effects of the nanopositioning stage without imposing
constrains on the sampling frequency of the digital control system.

V. CONCLUSION
This article introduced for the first time the FRC strategy to

handle the rounding effect met in high-speed tracking control of
nanopositioning stage using the RC technique. The techniques to
deal with the problems of non-minimum phase system and frac-
tional delay points are described in detail. The proposed FRC is
plugged into a PI control and implemented on a custom-built
piezo-actuated nanopositioning stage. The experimental results
show that the tracking errors caused by the rounding effect in
the traditional RC approach can be mitigated significantly when
tracking sinusoidal waveforms with frequencies from 1000 Hz to
1587.3 Hz. With this FRC, the task-dependent constrain on the sam-
pling frequency of the digital control system is no longer required,
making the control of the nanopositioning stage more flexible and
convenient.
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