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Abstract—Gesture recognition is important for human–
computer interaction and a variety of emerging research and
commercial areas including virtual and augmented reality.
Current approaches typically require sensors to be placed
on the forearm, wrist, or directly across finger joints; how-
ever, they can be cumbersome or hinder human movement
and sensation. In this paper, we introduce a novel approach
to recognize hand gestures by estimating skin strain with
multiple soft sensors optimally placed across the back of
the hand. A pilot study was first conducted by covering
the back of the hand with 40 small 2.5 mm reflective mark-
ers and using a high-precision camera system to measure
skin strain patterns for individual finger movements. Opti-
mal strain locations are then determined and used for sen-
sor placement in a stretchable e-skin patch prototype. Ex-
perimental testing is performed to evaluate the stretchable
e-skin patch performance in classifying individual finger
gestures and American Sign Language 0–9 number ges-
tures. Results showed classification accuracies of 95.3%
and 94.4% for finger gestures and American Sign Language
0–9 gestures, respectively. These results demonstrate the
feasibility of a stretchable e-skin patch on the back of the
hand for hand gesture recognition and their potential to sig-
nificantly enhance human–computer interaction.

Index Terms—Feature selection, gesture recognition,
human–computer interaction, skin stretch, soft sensing.

I. INTRODUCTION

G ESTURES are a ubiquitous means of human-to-human
communication [1] and have the potential to play a sim-

ilarly vital role in human–computer interaction [2]. Hand ges-
tures can act as a bridge to connect human intention to smart
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hardware and software systems for a variety of real-life appli-
cations. For example, amputees can utilize gesture intention to
improve prosthesis control [3] and the hearing impaired can po-
tentially use automated gesture recognition to enable communi-
cation with the unimpaired who do not know sign language [4].
Beyond medical applications, gesture recognition has also been
used to enable in-vehicle gestural interfaces in increasingly in-
telligent cars [5] and for robot and quadrotor teleoperation [6],
[7]. Virtual and augmented reality could also be significantly
enhanced through robust and effective hand gesture recognition
[8], [9].

The most widely used approach to wearable hand gesture
recognition is by sensing dynamic muscle characteristics in the
forearm and mapping them to hand and finger postures. Sur-
face electromyography (sEMG) is commonly used to estimate
muscle activation levels and classify hand gestures through a
commercial device like the Myo armband [10] or various re-
search prototypes [11]–[13]. sEMG can also be combined with
other sensing modalities to improve classification accuracy. For
example, the spatial resolution for classification can be im-
proved by combining sEMG with near-infrared spectroscopy
which monitors muscle oxygenation and perfusion [14] or with
mechanomyography which detects low-frequency muscle me-
chanical vibrations [15]. Li et al. [4] combined sEMG with ac-
celerometry to identify kinematic information in the hand and
arm for classification. Ultrasound imaging has also been used to
detect forearm muscle morphology for hand gesture recognition
[2], [16].

The wrist is another location targeted for wearable hand
gesture recognition, though it is challenging to use traditional
sEMG approaches because there is significantly less muscle tis-
sue than the forearm and is instead composed mainly of tendons
and bones. Nevertheless, sEMG combined with accelerometry
at the wrist has been used to effectively classify hand and sur-
face pressing gestures [17]. Other approaches include employ-
ing barometric sensors [18], [19] or force sensing resistors [20]
to estimate pressure and morphology profile changes around
the wrist for various hand gestures. Truong et al. [21] proposed
capacitance sensing to capture small skin deformations on the
user’s wrist and made the wristband deformable and battery
free. Kawaguchi et al. [22] measured the electrical contact re-
sistance change due to the deformation of the wrist. Rekimoto
et al. [23] estimated capacitance changes via capacitance sen-
sors at the wrist for different hand gestures. Although forearm-
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and wrist-based approaches can provide a portable and intu-
itive interface for gesture recognition, because of the complex
relationship between finger movements and forearm muscle or
wrist tendon activation, the accuracy of hand gestures involving
higher resolution finger angles is inherently limited.

Thus, sensors placed directly on the fingers can significantly
improve hand gesture recognition accuracy. Commercial data
gloves are often used, such as DataGlove family (Fifth Dimen-
sion Technologies (5DT), Irvine, CA, USA) and CyberGlove
(Immersion Corporation, San Jose, CA, USA), to measure fin-
ger flexion angles. However, data gloves typically cover almost
the entire hand, thus, restricting mechanoreceptive sensations
along the fingers and in the fingertips and can be large and
bulky making them difficult or impossible for some patients to
comfortably wear [24]. Epidermal electronics [25] and artifi-
cial skin sensors [26] provide another approach for estimating
finger postures. Bartlett et al. [27] utilized a conductive bond
and proposed an efficient digital fabrication approach to create a
custom skin sensor to recognize various gestures. Chossat et al.
[28] used liquid metal to create wearable soft skin to classify
hand gestures and Li et al. [29] used carbon grease for soft sens-
ing to recognize American Sign Language 0–9 gestures. While
placing sensors directly on the fingers can improve classification
accuracy, it can also be uncomfortable and hinder finger move-
ment, prohibiting widespread adoption. Skin deformation on the
back of the hand has also been captured for hand gesture recog-
nition [30]. Sugiura et al. employed photo-reflective sensors to
measure the distance between the device and skin [31], though
thickness and skin color can affect performance. Lin et al. [32]
utilized 19 strain sensors on the back of the hand to directly mea-
sure skin strains; however, this paper was limited in that they
only investigated limited local sensor placement and the strain
sensor was used for a rigid body and was thus, not suitable for
soft skin strain measurement. Currently, precise strains on the
back of the hand have not been systematically investigated and
there is yet to be a completely soft, stretchable sensing system
on the back of the hand for hand gesture classification.

The back of the hand is well suited for sensing hand gestures.
Although the back of the hand is not directly used during finger
manipulation, the strain patterns of the skin on the back of the
hand dynamically change as the fingers move [33]. Physiolog-
ically, the hand is often used for grasping and sensing during
which the fingers and palm work in concert for grasping while
fingertip mechanoreceptors sense a variety of tactile stimula-
tions including texture, temperature, pressure, vibration, and
pain [34]. In contrast, the back of the hand plays a lesser role
in grasping and functional sensing. Therefore, with little inter-
ference in sensing and grasping, placing sensors on the back of
the hand may be more readily acceptable in practical applica-
tions than placing sensors directly on the fingers or fingertips
and solves the problem of patient’s general inability to wear
bulky data gloves. Also, an e-skin patch with soft sensors on the
back of the hand can potentially be more easily generalized than
other approaches, such as a data glove, to account for different
hand sizes and to distinguish between left and right hands. A
sensor patch could potentially be made irrespective of hand size
and the left and right sides could be distinguished via software
algorithms.

Fig. 1. Stretchable e-skin patch prototype with optimally placed soft
sensors.

To achieve hand gesture recognition via sensing on the back
of the hand, two key challenges must be overcome.

1) Skin strain complexities. In contrast with skin covering
the fingers and finger joints in which skin strains are iso-
lated to the movement of each given finger, skin strains
across the back of the hand are highly coupled among sev-
eral different finger movements. Thus, it is necessary to
characterize back-of-the-hand skin strain patterns related
to various finger movements to optimize sensor place-
ment.

2) Sensor system design and manufacturing. Skin strains on
the back of the hand are relatively small as compared with
skin strains across the finger joints, and thus, the sensor
system must be highly sensitive to the relatively small
strains. In addition, the system must be designed to be
small, light, and comfortable to maximize user comfort
and increase the possibility of long-term compliance.

The purpose of this paper is to introduce a novel back-of-the-
hand gesture recognition approach (see Fig. 1) for hand gesture
classification. In contrast with previous approaches that cover
the fingers and fingertips, affixing sensors to the skin on the
back of hand avoids inhibiting tactile sensations. This paper
addresses the inherent design and implementation challenges
with an exploratory back-of-the-hand skin strain characteriza-
tion experiment, a detailed prototype design, detailed algorithm
development, and experimental validation. The primary contri-
butions of this work are:

1) Detailed skin strain characterization across the skin on the
back of the hand for various finger movements and the
corresponding optimal soft sensor locations to maximize
hand gesture classification accuracy.

2) A novel back-of-the-hand stretchable e-skin patch proto-
type for hand gesture recognition including soft sensor
design, manufacturing, and experimental validation. To
the best of our knowledge, this is the first approach com-
bining multiple soft sensors into a stretchable e-skin patch
on the back of the hand for gesture recognition.
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Fig. 2. (a) Physiological view of the back of the hand [35]. (b) Marker
positions on the back of hand for the skin strain characterization
experiment.

II. BACK-OF-THE-HAND SKIN STRAIN CHARACTERIZATION

A. Hand and Skin Physiology

The human hand is remarkably dexterous possessing approx-
imately 25 degrees of freedom driven by muscles in the hand
and forearm. The surface to the center of the hand consists
of different tissues including skin, muscles, and bones. Bones
act as the primary supporting structure and muscles contract to
drive finger movements. Skin consists of an epidermal protec-
tive layer, an elastic dermis layer containing sensing nerves, and
hypodermis layers containing fatty tissue for thermal insulation
and cushioning.

Skin, muscles, and bones work together to enable dexterous
hand movements. Extensor digitorum follows the metacarpal,
proximal phalanx, middle phalanx, and distal phalanx [see
Fig. 2(a)], and contracts during finger extension. Between each
metacarpal are dorsal interosseous of the hand enabling finger
flexion and abduction movements. The skin stretches with de-
formation during finger movements to enable lengthening and
shortening of tendons and muscles. Skin stretch properties are
complex because each finger movement is not driven by a sin-
gle muscle, but rather by a group of synergistic, coordinated
muscles activations. In addition, the skin is a single, continu-
ous, connected organ, so individual finger movements result in
coupled, nonlocalized skin stretch patterns across the hand.

B. Experimental Protocol

To systematically analyze skin strain patterns during finger
movements, an experimental protocol was designed to accu-
rately measure an array of skin displacements on the back of the
hand. A marker-based camera system approach was chosen as
this has previously been shown to exhibit accurate and repeat-
able results [30], [36], [37]. A Simi Motion (Simi Reality Motion
Systems GmbH, Unterschleiβheim, Germany) motion capture
system was used to quantify the complex skin strains during
various finger movements. The camera sampling rate was 50
Hz, which was considered sufficiently high to capture typical
finger movements at 5 Hz or less. Markers were located ac-

Fig. 3. Skin strain distribution for thumb abduction, index finger flexion,
middle finger flexion, ring finger flexion, and little finger flexion. Black
dashed squares represent original strains without finger flexion (upper
left), colored rectangles represent strains during finger flexion. Each rect-
angle’s width and length are proportional to medial-lateral and anterior-
posterior strain at that location. Color intensity represents relative strain
energy.

cording to physiological hand landmarks to enable consistency
across subjects of different hand sizes. Specifically, 2.5-mm-
diameter markers were attached along the second, third, fourth,
fifth metacarpals and between each metacarpal in a 5 × 8
rectangular grid [see Fig. 2(b)].

Ten subjects (all male, age: 27.2 ± 6.1 yr, height: 176.7 ± 8.8
cm, weight: 70.5 ± 8.3 kg) gave informed consent and partici-
pated in this experiment which conformed with the Declaration
of Helsinki. Before testing, a staff member placed markers on
the back of the left hand with skin safe, adhesive gel (Safe Grip,
Walker Tape, USA). We selected individual finger movements
for testing (see Fig. 3) as they are the primary movements that
form the foundation of hand gestures. Thus, during the experi-
ment, subjects were asked to perform hand postures with each of
the following movements: thumb abduction, index finger flex-
ion, middle finger flexion, ring finger flexion, and little finger
flexion. Each hand posture was held constantly for three seconds
and each hand posture was repeated three times. Automated
tracking analysis was performed posttesting via Simi Motion
software to determine each marker’s displacement throughout
each trial.

C. Data Analysis

Data processing was performed to transform absolute marker
displacements to relative marker displacements to eliminate mo-
tion artifacts. For each gesture during each trial, the first and
last one second of data were discarded to avoid transient effects,
and the middle one second of steady-state data were retained
for analysis. Data from all subjects were averaged together to
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perform comprehensive analysis. Relative marker positions and
strains were decomposed in medial-lateral (x-axis) and anterior-
posterior (y-axis) directions and calculated as follows:

Rx(i,j ) = d(i,j+1) − d(i,j ) (1)

Ry (i,j ) = d(i+1,j ) − d(i,j ) (2)

εx(i,j ) =
Rk

x(i,j ) − R0
x(i,j )

R0
x(i,j )

(3)

εy (i,j ) =
Rk

y (i,j ) − R0
y (i,j )

R0
y (i,j )

(4)

where Rx , Ry represent the relative distance between adja-
cent markers in medial-lateral and anterior-posterior directions
respectively, d(ij ) represents the absolute displacement of the
marker in ith row and jth column, and εx(i,j ) , εy (i,j ) represent
the medial-lateral and anterior-posterior local strain at each lo-
cation, respectively. Rk represents relative marker distance cor-
responding to the kth gesture and when k = 0, it corresponds to
rest-state gesture, defined as the reference length.

In addition, a strain energy metric was used and calculated as
follows:

E(i,j ) =
( |εx(i,j ) | + |εx(i+1,j ) |

2

)2

+
( |εy (i,j ) | + |εy (i,j+1) |

2

)2

(5)
where E(i,j ) represents the strain energy of the rectangle formed
by four adjacent markers and is visualized via color intensity
(see Fig. 3). The color intensity is based on the normalization
of all the strain energy defined in (5).

D. Results

Overall skin strain and strain energy characterization showed
that generally, anterior-posterior strains occurred along the
metacarpal of each respective finger during flexion (see Fig. 3).
Medial-lateral strain was especially prominent during flexion of
the little finger. Skin in the center of the back of the hand tended
to have more pronounced and obvious strain patterns. Thumb
abduction exhibited the smallest strain and ring finger flexion
exhibited the largest strain on average. The average skin stretch
(strain) in the medial-lateral direction was 0.71 mm (4.84%)
and in the anterior-posterior direction was 0.90 mm (3.66%)
(see Fig. 3). The largest skin stretch in the medial-lateral direc-
tion was 1.73 mm and in the anterior-posterior direction was
2.36 mm. The highest strain energy occurred during middle fin-
ger flexion near the third quartile of the third dorsal interosseous
of the hand and the lowest strain energy occurred during thumb
finger abduction near the fourth quartile of the fifth metacarpal.

III. OPTIMAL SENSOR PLACEMENT DESIGN

A. Motivation

Building off the skin strain characterization results in the pre-
vious section, optimal sensor placement analysis was performed
to maximize hand gesture classification accuracy. The distance
between each adjacent pair of markers was defined as a distinct

feature corresponding to a specific skin location in either an
anterior-posterior or medial-lateral orientation (67 total features
for all markers across the back of the hand) and then, a subset of
features was chosen to maximize classification accuracy. One
method is to choose the features with maximum strain during
finger movements, however, these features are not guaranteed to
produce optimal classification results. Instead, features should
be selected that can provide the most distinguishing information
for different classes including how they are coupled together. In
general, a systematic process of feature selection resulting in a
subset of full feature set can reduce computational load, enhance
performance, and provide better understanding of data [38] and
is widely used in text categorization [39], [40], data mining
[41], [42], and genomic analysis [43], [44]. In the specific case
of wearable hand gesture recognition devices designed for skin
on the back of the hand, feature selection can inform optimal
sensor locations and reduce the total number of required sensors
to enable practical implementation.

B. Feature Selection

The original 67 feature set was reduced to five robust fea-
tures with acceptable computational load (see Fig. 4). In gen-
eral, this feature reduction process involved the following steps:
1) three different feature selection methods were used to assign
respective scores to each feature and reduced the total number
of features to 32; 2) a Gaussian filter eliminated potential dis-
placement errors; and 3) the final five features were chosen via
a classifier calculating the performance for all the possible five
feature combinations, and the highest performing combination
was chosen.

Specifically, raw data comprising the full dataset were based
on the experimental data collection described in Section II. Each
individual feature was defined as the distance between adjacent
markers. There were 32 medial-lateral features and 35 anterior-
posterior features resulting in 67 total features in the full feature
set [see Fig. 2(b)]. Features were scored based on the filter,
wrapper, and embedded methods. The filter method is simi-
lar to preprocessing and does not require a learning algorithm.
Features are generally evaluated by predefined criteria and in
this case, mutual information [45], [46] was chosen based on
information theory to provide more general measures of the
dependency between target and feature sets [47]. A primary
benefit of mutual information is that it can measure nonlinear
relationships [48] unlike other methods such as the Pearson
correlation coefficient. We implemented this metric via python
based on entropy estimation from k-nearest neighbors (KNN)
[48], [49].

Unlike filter methods, the wrapper method allows detection
of possible interactions between variables [50]. Classifiers were
involved in the wrapper method and the performance of the
classifier was used as criteria for subset selection [51]. In this
paper, the recursive feature elimination method was utilized:
first, a classifier was trained using all features and then, the worst
performing feature was eliminated based on model coefficients
which reflected the importance of different features [52]. Then,
the pruned feature subsets were used to iterate the procedure
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Fig. 4. Feature selection algorithm flow chart leading to optimal sensor locations.

until the feature number was reduced to a predefined minimum
number (in our case, five features). After iteration, features were
ranked by the order of being eliminated. Logistic regression was
chosen as the predefined classifier for wrapper method in our
case.

The embedded model computes feature importance scoring as
the classifier is constructed. The embedded model relies on the
chosen classifier and the selected optimal features via certain
classifiers may differ from optimal features selected by other
classifiers [53]. Random forest (RF), a commonly used classifier,
is a bagging method consisting of a collection of decision tree
classifiers. The intrinsic characteristic of decision trees helps to
assign each feature with a score when splitting a node based
on mean decrease impurity. The criterion for splitting a node is
Gini impurity, which measures the probability when randomly
choosing two samples that they have different labels and is
defined as follows:

Gini(D) =
|y |∑

k=1

∑
k ′ �=k

pkpk ′ = 1 −
|y |∑

k=1

p2
k (6)

where pk the probability of correctly labeling the sample with
label k(k = 1, 2, . . . , |y|) and p′k is the probability of wrongly
labeling the sample with label k. The feature score is high when
the Gini index is low.

Since the markers are placed on subjects with different hand
sizes, it is possible that the target markers can slightly shift
to adjacent places. Thus, an algorithm which can consider the
possible shifts and calculate the weighted sum of adjacent fea-
tures is needed. In convolutional neural networks, convolutional
layers extract features via the convolutional operation between
filter and local neighbor pixels, and similarly, a Gaussian space
filter was employed to compute weighted sums of adjacent fea-
tures. The Gaussian space filter assigns the center point the
highest weight, and the weight value decreases as the distance
from the center increases. The Gaussian space filter was used
for the preliminary filter, wrapper, and embedded methods. The

mathematical formulation of the Gaussian filter is defined as
follows:

G(x, y) =
1

2πσ2 e−
x 2 + y 2

2 σ 2 (7)

where σ represents the standard deviation and x and y represent
the distance from the center point. In our application, we chose
a 3× 3 Gaussian kernel template with a σ of 0.5 based on
preliminary testing to ensure a reasonable and balanced weight
for averaging.

The filtered score of each feature was normalized to the
same range and then, the average score under different feature
selection methods was used to compute the final score.

Based on preliminary testing to determine a computationally
acceptable method with a reduced number of features for further
processing, we chose the top 32 features. The final feature set in-
cluded five features, because we assumed this was the minimum
required to reconstruct each of the five independent finger move-
ments for the simplified model of a hand, which has also been
frequently adopted by other researchers for placing sensors on
finger joints [29], [54]. A complete search method was adopted
to find five features from 32. The criterion was the resulting
accuracy of leave-one-user-out cross validation. Linear discrim-
inant analysis (LDA) was used, because it is computationally
efficient and typically performs as well as other algorithms for
the given testing conditions [55], [56]. This algorithm was pro-
grammed via Python with the help of Scikit-learn module [57].

C. Results

Based on the aforementioned analysis, the final selected fea-
tures and their respective locations were: Ry (1,1) (first quartile
of the fifth metacarpal), Ry (2,3) (second quartile of the fourth
metacarpal), Rx(3,4) (middle of the third dorsal interosseous),
Ry (1,6) (first quartile of the second dorsal interosseous), Ry (3,7)
(third quartile of the second metacarpal) (see Fig. 1). The fi-
nal sensor locations were positioned along the anterior of each
metacarpal. Generally, anterior-posterior features scored more
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than medial-lateral features based on the ranking for all fea-
tures, and the lowest ranking features were generally located
near the first quartile of the fifth metacarpal in the medial-lateral
direction.

IV. E-SKIN PATCH SYSTEM DESIGN

A. e-Skin Patch Prototype

To make the e-skin patch feasible for hand gesture recogni-
tion and user friendly to become a wearable gesture interface,
two criteria should be considered: 1) high sensor resolution
to fulfill the requirement from Section II; and 2) sensors
should be thin, skin compatible, and deformable enough to
form a comfortable interface. Considering the tradeoff of
sensitivity, low expense for manufacturing, and easy access for
measurement, we chose to design the stretchable e-skin patch
to be resistance-based type in a 3-layer structure—two outside
elastomers protecting the soft electrode layer made of carbon
grease (847, MG Chemical, Canada) in the middle. Each sensor
unit was designed in an S-shaped pattern to enhance sensitivity
as well as the capability of sensing two-dimensional stretch.
Sensor resistance has a relatively good linear relationship with
carbon grease strain and when the length or width stretches,
the sensor’s resistance will increase. The substrate was made
from off-the-shelf commercial biocompatible silicone film
(SILPURAN FILM 2030, thickness = 100 μm, Wacker
Chemie, Germany) which is ultrathin and permeable to air.

For manufacturing, a laser cutter was used to cut the cus-
tom designed shape on a polyethylene terephthalate (PET) film
(thickness = 100 μm). After placing the PET film with cus-
tomized shapes on silicone film, screen printing technology was
utilized to fabricate carbon grease electrodes. The PET film
was peeled off and the laser-cut conductive cooper-tin fabric
was embedded to connect electrodes with outside electronics.
A very thin Ecoflex 30 (Smooth-On, resin and harder mixed
by 10:1 in weight) layer was brushed onto the silicone film as
an adhesive and another silicone film was applied as the cover,
which was cured for approximately 15 minutes at room tem-
perature [see Fig. 5(a)]. After performing the loading sensor
characterization test, the sensor resolution was determined to be
0.01 mm in both the anterior-posterior and medial-lateral direc-
tions and the total thickness of the e-skin patch was 550 μm.
Two experiments were performed to further investigate sensor
characteristics. A cyclic loading experiment was performed in
which sensors were repeatedly and continuously loaded from
0% to 100% strain. Results showed that hysteresis was 0.09
[see Fig. 5(b)]. Also, a seven-day cyclic experiment of 100 cy-
cles per day was conducted, and results showed that the signals
were stable and repeatable across days and the sensor was still
sensitive on the seventh day [see Fig. 5(c)], demonstrating the
potential for long-term use.

A customized circuit was designed to measure and record the
resistance change. A stable power supply was applied on each
electrode in series with a standard resistor. The voltage between
electrode and standard resistor was measured by an analog to
digital converter which transmitted the data to a computer. The

Fig. 5. (a) Stretchable e-skin patch manufacturing process.
(b) Hysteresis experiment. (c) 7-day cyclic experiment.

sampling frequency was 100 Hz. Data were stored and processed
on the computer.

B. e-Skin Patch Classification Algorithm

The electrode resistance and the sampling voltage have
a clear nonlinear relationship described by V = (3.3×Rx )

(R0 +Rx ) .
The sampled voltage is positively correlated to electrode re-
sistance and is asymptotic to 3.3 V, which acts as a saturation
function to suppress higher resistance values. Therefore, voltage
values were chosen as features. The system had five channels
and thus the feature vector was five dimensional.

For classification, LDA was chosen for its low computational
load and robustness. Based on LDA, the computation time was
0.25 ms in an embedded system (STM32L475), which should
theoretically be fast enough for real-time performance while
sampling at 100 Hz (10 ms per cycle). LDA is based on the
Bayes theory

Pr(G = k|X = x) =
fk (x)πk

ΣK
l=1fl(x)πl

(8)
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where Pr(G = k|X = x) is the posterior probability, πk is
the prior probability of class k, and fk (x) is the class condi-
tional density. LDA tries to model the class conditional density
fk (x) with Gaussian distribution and assumes class covariance
is identical. Gaussian distribution parameters such as mean and
covariance are estimated in the training process.

The discriminant function is defined as

δk (x) = xT Σ−1μk − 1
2
μT

k Σ−1μk + logπk (9)

where x is the input vector, Σ is the covariance matrix, μk the
k class’s mean, and πk the prior probability of class k. Train-
ing was performed as described below to acquire the estimated
prior probability and Gaussian distribution parameters via the
following:

π̂k =
Nk

N
(10)

μ̂k =

∑
gi =k xi

Nk
(11)

Σ̂ =
K∑

k=1

∑
gi =k

(xi − μ̂k )(xi − μ̂k )T

N − K
(12)

where Nk is the number of class k observations. Hand gesture
classification was determined based on the output function with
the highest value as follows:

gk (x) = var maxl{δl(x)}. (13)

As a comparison, we also performed classification with other
commonly used KNN and RF algorithms.

V. EXPERIMENTAL VALIDATION

A. Testing Protocol

An experiment was performed to evaluate the performance
of the stretchable e-skin patch system for classifying various
hand gestures. Eight subjects (six male, two female, age: 27.2
± 6.1 yr, height: 176.7 ± 8.8 cm, weight: 70.5 ± 8.3 kg) par-
ticipated in the experiment after giving informed consent in
accordance with the Declaration of Helsinki. A staff member
attached the customized e-skin patch to the subject’s left hand
with skin safe, adhesive gel (Safe Grip, Walker Tape, USA). Two
different groups of gestures were chosen (see Fig. 6). Group 1
was designed to validate the actual performance of the e-skin
patch prototype based on sensor location optimization and the
chosen gestures were the same as those in Section II—thumb
abduction, index finger flexion, middle finger flexion, and ring
finger flexion. Group 2 was designed to test the generalizing per-
formance and chose potential commonly used gestures in daily
life which were comprised of American Sign Language 0–9
gestures. Subjects performed the required gestures following a
video guidance cueing target gesture’s picture on screen for 5 s
with 5 s rest in between which is the commonly used protocol in
[17] and [58]. The relatively short protocol time could increase
the proportion of transient state, and during transient state, clas-
sification can deteriorate because the model was trained based
on steady-state signals. Each gesture appeared once per trial

Fig. 6. Validation testing hand gesture sets.

and the whole experiment consisted of ten total trials. Subjects
rested after each trial, if desired, for up to 2 min.

B. Data Analysis

Data were stored on the computer and analysis was performed
offline. The first and last 0.5 second of target gesture data often
included transient-state data and were thus discarded, and the
middle 4 s of steady-state data were retained for analysis. The
sampling frequency was 100 Hz and thus, each dataset contained
400 data samples for each gesture in each trial. A low-pass filter
with a 10 Hz cutoff frequency was used to reduce high-frequency
noise. Leave-one-trial-out cross validation for each subject was
used to access the classification performance and two different
group gestures were processed separately. The classification
accuracy was defined as correctly classified sample numbers
divided by total sample numbers. The Kruskal–Wallis H test, a
nonparametric test that imposes no prior distribution assumption
[59], [60], was utilized to determine if different classifiers had
an impact on classification accuracy, and the threshold value
was set to p = 0.05.

C. Results

An example trial showed raw sensor data when performing
American Sign Language digits 0–9 gestures (see Fig. 7). For
finger gestures, LDA, KNN, and RF classification accuracies
were 95.3 ± 4.0%, 93.0% ± 5.4%, and 91.6 ± 3.7%, respec-
tively. The highest accuracy for a single subject was 100%, and
the lowest accuracy for a single subject was 84.4 %. For Ameri-
can Sign language 0–9 gestures, the classification accuracy was
94.4± 2.3%, 91.5%± 3.1%, and 91.8± 2.5%, respectively (see
Fig. 8). The highest accuracy for a single subject was 97.2%
and the lowest accuracy for a single subject was 87.1%. The
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Fig. 7. Raw sensor data signals from sensors 1–5 when performing
American Sign Language digits 0–9 gestures.

Fig. 8. Classification accuracy for different gesture sets. ASL: Ameri-
can Sign Language, LDA: Linear Discriminant Analysis, KNN: K Nearest
Neighbors, RF: Random Forests.

Kruskal–Wallis H test results showed no significant difference
among different classification methods (p = 0.23).

VI. DISCUSSION

This paper presents a novel wearable on-body solution for
gesture recognition. Our approach to recognize hand gestures
is distinct from the conventional approach of putting sensors
directly on joint angles, such as for data gloves, because strains
on the back of the hand are complex and coupled for differ-
ent finger movements. Strain characterization was investigated
and visualized with a high-precision marker-based camera sys-
tem. An e-skin patch of five soft sensors on the back of the hand
with geometry optimization was validated with experiments and
showed promising results. Although camera and vision-based
systems can achieve high precision for tracking, they present
potential privacy concerns because of the visual data collected,
and they are sometimes not portable when the camera needs
to be mounted to a fixed location such as Leap Motion or Mi-
crosoft Kinect. Also, the background complexity and light con-
dition can affect the results. In contrast, the wearable approach
is ubiquitous without the limitation of privacy and environment
complexity problem.

Carbon grease is a widely used material for sensor electrodes.
Compared with liquid metal and nanoparticles, carbon grease
electrodes are relatively inexpensive, decreasing the total cost of

TABLE I
COMPARISON WITH STATE-OF-THE-ART MATERIALS

the sensing system (see Table I). In addition, the manufacturing
process of carbon grease-based sensors is much simpler than
liquid metal electrodes, because it does not need preinstalling
channels. The sensitivity of carbon grease can be relatively low
but is generally high enough for most applications including
gesture recognition.

Classification accuracy of the proposed system was com-
pared to that of other wearable solutions. For example, the re-
sults were slightly higher than wrist or forearm-based methods
such as sEMG and pressure [17], [18]. This may be because
the sensors were located closer to finger movements with larger
signal changes during finger movements. The presented classi-
fication results were slightly lower than previous ultrasonic ap-
proaches [2], [16], however, the presented experiment protocol
was also significantly different, and ultrasonic methods are gen-
erally bulky and expensive. Finger joint soft sensors [29] also
exhibit higher accuracies though they can impose restrictions
on finger movement. Sugiura et al. [31] used photo-reflective
sensors to measure the distance between the device and skin,
and though the idea is similar, the principle is different. Our
approach is to directly measure skin strains which could po-
tentially be integrated in aesthetical e-skin or tattoo sensors for
more natural, aesthetic applications. Lin et al. [32] utilized 19
force resistive sensors on the back of the hand for gesture clas-
sification and achieved 95.8% classification accuracy. Although
the performance is similar, the following concerns and updated
methods distinguish this paper from Lin’s previous research: 1)
their research method was only in one dimension and did not
consider two-dimensional skin stretch. Instead, we used high-
precision marker-based camera system to fully investigate the
skin stretch properties and design our prototype sensor capable
of sensing in two dimensions. As a result, the proposed system
includes features in both dimensions; 2) they did not perform
whole area feature selection to find a global optimum. Their
methods did not consider coupling effects and sensor placement
was not optimized. In contrast, we performed feature selection
based on data covering the whole potential area for interaction
and the sensor number was reduced to five through a systematic
optimization process; and 3) their strain sensor did not conform
with skin and was not user friendly. Also the strain sensor was
used to measure rigid structures and thus, it is possible to dam-
age the sensors when removing the sensors. Our soft sensors
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were custom designed to be flexible, stretchable, and thin to
make the e-skin patch more user friendly.

A well known problem with feature selection and the asso-
ciated algorithm development is variance leading to a lack of
robustness. The approach in this paper to improve robustness
involved the following: 1) ten subjects were recruited to elim-
inate individual accidental event to ensure statistically reliable
results. Also, when attaching markers on skin, different subjects
had different physiological parameters such as hand size which
could make the data unreliable. We studied the physiological
structure of the hand and attached markers according to these
landmarks so that different hand sizes could be scaled; and 2)
in the feature selection algorithm, we first utilized three dif-
ferent approaches and calculated their mean as the preliminary
feature importance score to overcome each method’s certain
drawbacks and limitations. Second, to reduce the possible shift-
ing problem of attached markers and different hand parameter
problem, a Gaussian filter was used to assign the center highest
weight and adjacent features different lower weight according
to the distance to center point. Finally, after the feature number
was reduced to an acceptable computation load, we established
the ten subjects’ average recognition accuracy as metrics and
calculated each combination of features and the correspond-
ing classification accuracy. In this way, the coupling effect of
each feature could be fully considered and the reduced feature
set’s global optimization was found. From the results of feature
selection, the selected features frequently appeared in the top
rank which demonstrated that feature selection had some ro-
bustness. In addition, four of the five optimal sensor locations
were oriented to sense anterior-posterior stretch which could be
attributed to the reason that hand gestures were composed of
finger movements primarily driving skin stretch on the back of
the hand in anterior-posterior directions. Near the middle of the
third dorsal interosseous where large and irregular stretch could
occur due to convergent trends of tendons was the only location
of a medial-lateral stretching sensor.

Aesthetically, the back of the hand is a relatively common
place for tattoos and thus, future users could potentially wear
a stretchable e-skin patch with various artistic designs and pat-
terns. Thus, the proposed prototype could potentially be lever-
aged to integrate both function and fashion. Thin customized
aesthetic pattern layers could potentially be printed on top of
the prototype enabling the motivation of widespread long term
use.

The sensor is based on resistance sensing and thus, the ex-
tra power requirement for resistance sensing is relatively low
compared with other embedded system components such as
wireless communication [21]. Although the proposed system is
promising for practical embedded systems, one potential limi-
tation is that we have not integrated the microcontroller, power
supply, and wireless communication into a stand-alone system.
Future work should focus on developing battery-free and low
power systems [21] or integrating e-skin with off-the-shelf smart
watches and wristbands and adopting experiment protocol more
similar to real-life scenarios. Future work could also consider
extracting more informative features such as strain energy for
gesture recognition classification.

VII. CONCLUSION

This paper introduced a novel sensing system and the prin-
ciple for gesture recognition with little interference on user’s
motion and sensing via stretchable e-skin patch with multiple
soft sensors on the back of the hand. A high-precision marker-
based camera system was used to investigate the characteristic
of skin stretch with ten subjects to provide insights about skin
stretch along finger movements. Based on the results, a robust
feature selection method was introduced to optimize sensor lo-
cations considering the coupling effects. Finally, a customized
e-skin patch with multiple soft sensors was designed, manufac-
tured, and validated by experiment. The proposed system could
facilitate future intuitive human–computer interaction.
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