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ABSTRACT: By 3D printing lattice structure with active materials, the
structures can exhibit shape and functional changes under external stimulus.
However, the programmable shape changes of the 3D printed lattice structures
are limited due to the complex geometries, nonlinear behaviors of the active
materials, and the diverse external stimuli. In this work, we propose a design
framework combining experiments, theoretical modeling, and finite element
simulations for the controllable shape changes of the 3D printed horseshoe
under thermal stimulus. The theoretical model is based on a phase evolution
model that combines the geometrical nonlinearity and the material nonlinearity.
Results show that the shapes with positive or negative Poisson’s ratio and
bending intermediate shapes can be programmed by tuning the geometrical
parameters and the temperature distribution. This work provides a method to
aid the design of 3D printed functional lattice structures and have potential
applications in soft robotics, biomedicine, and energy absorbing fields.
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■ INTRODUCTION

Mechanical lattice structures are able to exhibit novel
functionalities1−4 due to their unusual mechanical proper-
ties,5−8 which can be programmed by appropriate design and
arrangement of their microstructures. The rapid development
of 3D printing technology has enabled the fabrication of
complex lattice structures,7,9,10 which facilitates the physical
production of otherwise unrealizable designs with highly
ordered 3D structures. However, once manufactured, the
arrangement of the unit structures is generally fixed. Thus, the
mechanical properties that emerge from the 3D arrangement
are not able to be tuned, which significantly limits the
application of the lattice structures. In order to overcome this
drawback, various approaches of reversible and stiffness
tunable structures have been proposed recently.11−18 Most of
them are formed by combining active materials with the 3D
printed lattice structures.19−24 When printing the 3D structures
with active materials, the structures have the capabilities of
changing their configurations subjected to an external stimulus.
3D printed shape changing lattice structures, with a
combination of large recoverable deformations, nonlinearity,
and instability, provide promising properties and function-
alities and have potential applications, such as in soft
robotics,25−28 aerospace,29,30 and medical fields.31

Despite the diverse achievements, the development of the
3D printed shape changing lattice structures are hindered
because of the complex geometries, the large deformation, and
the nonlinear material behaviors of the active materials. Thus,

the designs of the 3D printed shape changing lattice structures
usually rely on empirical methods and lack the guide of
theoretical models. To control the shape changing behaviors of
the 3D printed lattice structures, several models have been
developed. For example, 3D printed auxetic (negative
Poisson’s ratio) lattice structures that are capable of achieving
area changes up to 200% are designed and their shape memory
effects are simulated using finite element (FE) simulations.14

The shape memory effects of 3D printed auxetic lattice
structures are studied using finite element simulations, and
results show that the moduli and Poisson’s ratios could be
continuously tailored by tuning the geometrical parameters.21

However, these models are based on finite element
simulations, which are time-consuming, and the fundamental
mechanism is difficult to find.32−35 Recently, analytical models
have also been proposed by direct 4D printing via active
composite materials driven by the embedded residue
stresses.13,15 But residue stresses are relatively small and large
deformation is hard to achieve. Therefore, in order to fully
exploit the shape and functional transitions of the 3D printed
lattice structures, lattices that could exhibit large and reversible
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deformation and analytical models that could predict their
behaviors are needed.
In this work, we design 3D printed shape changing

rectangular/triangular modified horseshoe lattice structures
that can exhibit large controllable deformations subjected to a
thermal stimulus. To program their shape changing behaviors,
an analytical phase evolution model is developed that takes
into account both the geometrical nonlinearity resulting from
the large deformation and the material nonlinearity of the
thermomechanical material. We also conduct finite element
simulations to verify the development. All of the theoretical
predicted, FE simulated, and experimental results agree well.
By using the theoretical framework, both 3D printed shape
changing structures with positive and negative Poisson’s ratios
are designed. The shape changing behavior of a 3D lattice
programmed by axial, bending, or twisting loadings are
investigated. Results also show that various intermediate states

can be designed by rationally choosing the geometrical design
and external stimulus distribution.

■ DESIGN, EXPERIMENTS, AND MODEL

Geometry of Horseshoe Lattice Structures. Rectangu-
lar and triangular modified horseshoe lattice structures are
designed as shown in Figure 1a to generate large deformations
using material with relatively small failure strain. The structures
are constructed by replacing the straight connecting beams in
rectangular/triangular lattices with modified horseshoe micro-
structures. The modified horseshoe microstructure consists of
two identical circular arcs arranged antisymmetrically that
connected with straight beams. Each circular arc has radius R,
arc angle 2θ0, and width w, and the length of each straight
beam is L. The thickness of the lattice structure is d. Each
modified horseshoe microstructure is constructed on the basis
of the horseshoe structure36 by adding two straight beams to
connect the arcs. This modification can significantly improve

Figure 1. 3D printing of the shape changing lattice structures. (a) Design of the horseshoe lattice. Schematics of a rectangular (upper) and
triangular (bottom) horseshoe lattice structures, their representative periodical units, and the single horseshoe microstructure. (b) Structures of a 3
× 3 × 6 3D horseshoe lattice and its periodical unit. (c) Shape memory cycle of the lattice structures. By applying uniform or non-uniform heating
in the recovery step, a stretching or bending intermediate shape can be formed.
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the stretchability of both the single horseshoe microstructure
and lattice structures.37 To avoid cumbersome terminology,
the rectangular/triangular modified horseshoe lattice structures
are simplified as rectangular/triangular lattices. The structures
of a 3 × 3 × 6 3D horseshoe lattice (3 units in x direction, 3
units in y direction, and 6 units in z direction) and its
periodical unit are shown in Figure 1b.
By using the shape memory behavior of the lattice materials,

the lattice structure can be programmed into different shapes.
The shape programming and recovery of the lattice structure
are shown in Figure 1c. A triangular horseshoe lattice is taken
as an example. The triangular lattice structure is first stretched

at a high temperature (80 °C). The deformation is maintained
while the temperature is decreased to a low temperature (25
°C). The loading is removed at low temperature, and the
lattice is programmed. In the recovery step, the lattice is heated
back to high temperature and the original shape of the lattice
structure is recovered. By applying uniform or non-uniform
heating, different intermediate shapes can be formed. For
example, a bending shape can be formed by applying non-
uniform heating where the temperature at the top half of the
triangular lattice increases faster.

Experiments. The lattice structures are fabricated using a
commercial 3D printer (Object J750, Stratasys) with the shape

Figure 2. Mechanical properties of the lattice structure. (a) Experimental, theoretical, and FE simulated stress−strain curve of the rectangular
lattice under uniaxial tensile test at room temperature (25 °C). (b) Theoretical (dashed) and experimental (solid) storage modulus and tan δ of the
shape memory polymer Vero material. (c) A shape memory cycle of a full strip under stress control mode. Inset shows the geometry of the strip.
[Experiments, solid curves; model, dashed curves.] (d) Shape memory cycle of a rectangular lattice under stress control mode. Inset shows the
geometry of the lattice. (e) Schematic illustration of the phase evolution model for lattice structures. The strain of the lattice structures consists of a
thermal expansion component and a mechanical component. The mechanical component consists of an equilibrium branch and n glassy non-
equilibrium branches. (f) Schematics of the modulus as a function of temperature. The modulus consists of the equilibrium modulus Eeq and the
glassy modulus. As the temperature decrease from Ta to Ta+1, the increase of glassy modulus is represented by Ea+1.
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memory polymer (SMP) Vero (Stratasys Inc., Edina, MN,
USA). Vero is photopolymerized with an ink containing
isobornyl acrylate, acrylic monomer, urethane acrylate, epoxy
acrylate, acrylic monomer, acrylic oligomer, and photo-
initiator.19 It is a rigid plastic at room temperature. This
material has been widely used to achieve thermally induced
shape changes of 3D printed structures. To characterize the
material properties of the SMP material and lattices, several
experiments are conducted including the following: (1)
uniaxial tensile tests for rectangular and triangular lattice
structures; (2) DMA tests for the shape memory polymer
Vero; (3) shape memory tests for the a full strip made from
Vero and rectangular lattice structures composed of 2
(longitudinal) × 2 (transverse) periodical units. Detailed
experimental procedures are shown in the Supporting
Information.
The experimental stress−strain curve of the rectangular

lattice structure under uniaxial tensile test is shown in Figure
2a. The lattice shows a nonlinear stress−strain behavior.
Because the strain is relatively small (<∼50%), the effective
modulus is low, resulting from the bending of the arc part. As
the strain increases, the modulus increases as the micro-
structure rotates to align to the vertical direction on which the
stress is applied. As the lattice is further stretched (strain >
∼150%), the modulus is large because the microstructure
mainly undergoes uniaxial stretch. The inset in Figure 2a shows
the experimental shapes with strain at around 0, 50%, and
100%, respectively.
The dependences of the storage modulus and tan δ on

temperature are presented in Figure 2b. It can be seen that the
storage modulus of the Vero material increases more than two
orders from ∼10 MPa at T = 80 °C to above 1 GPa at room
temperature. The glassy transition temperature Tg of the Vero
material is around 58 °C. Theoretical results based on the
multibranch thermomechanical model are compared with the
experimental DMA results as shown by the dashed curves in
Figure 2b (see the Supporting Information for details). It can
be seen that the theoretical estimations can capture the
experimental storage modulus and tan δ curves within the
entire testing temperature range.
Panels c and d of Figure 2 show experimental results (solid

curves) of the stress, strain, and temperature with time in a full
shape memory cycle for a full solid strip and a rectangular
lattice structure under stress control mode. The insets show
the corresponding shape used in the experiments. The use of
lattice structure can effciently facilitate the shape programming.
Under a programming stress of 400 kPa, the full strip can only
be stretched to around 6%, while the strain of the programmed
lattice is around 50% with a programming stress of 5 kPa.
Theoretical Model. In order to program the shape

changing behaviors of the lattice structures, a theoretical
model based on phase evolution is developed. The geometrical
nonlinearity resulting from large deformation and the depend-
ence of the SMP’s stiffness on temperature are taken into
account.
Figure 2e shows a rheological representation of the

thermomechanical multibranch model that decomposes the
total strain into a mechanical part and a thermal part. For the
mechanical part in the model, an elastic phase and several
glassy phases are arranged in parallel. As the temperature
decreases, the glassy phases gradually form. Once a small piece
of glassy phase forms, the corresponding switch in Figure 2e
turns on. Depending on the thermomechanical conditions, the

glassy phases forming at different times may have different
deformation histories. As temperature increases, the glassy
phases vanish gradually. According to the kinetic description of
the heating process, the piece of glassy phase that grows at a
later time vanishes first. Once a small piece of glassy phase
vanishes, the corresponding switch in Figure 2e turns off and it
does not carry load any more.
Starting from the simple Hooke’s law that relates the stress σ

and strain ϵ of the linear elastic material by its modulus E as σ
= Eϵ, we assume the relation between the stress σ(T,ϵ) and the
strain ϵ of a lattice structure as

T E T f( , ) ( ) ( )σ ϵ = ϵ (1)

where E(T) represents the dependence of the SMP material’s
stiffness on temperature, as shown in Figure 2b. f(ϵ)
characterizes the stress−strain relations of the lattice structure.
We may mention that f(ϵ) can characterize the stress−strain
relations due to the geometrical nonlinearity under large
deformation. The developed model can also be applied for
large deformation. The above assumption separates the effects
of temperature and large deformation as the temperature
determines the material nonlinearity, while large deformation
leads to the geometrical nonlinearity. In eq 1, we neglected the
higher order terms of E(T), which characterizes the material
nonlinearity due to large deformation. This is because the large
deformations of a wide range of lattice structures are mainly
due to the geometrical design5,21,36 but not the material
nonlinearity. For example, the elongation of horseshoe
structures is due to the rotation of the joints36,37 and the
local maximum strain is around ∼3.5% even when the total
strain achieves 100% (Figure S8 in the Supporting
Information). In origami-based metamaterials, the large
stretchability results from the folding and unfolding
motions.38,39 In these examples, even though the overall strain
of these structures is large, the local strain is small, and thus
material nonlinearity’s effect can be ignored. At the special
case, f(ϵ) = ϵ for a full strip. For the horseshoe lattice, f(ϵ) =
f(L,R,w,θ0,ϵ) is a complex function that takes into account the
effect of geometrical parameters, as derived in the Supporting
Information.
The strain ϵ(T) of the lattice structure consists of the

mechanical part ϵM(T) and thermal part ϵT(T) as

T T T( ) ( ) ( )M Tϵ = ϵ + ϵ (2)

The thermal strain ϵT(T) at T = TH is set as the reference
state; i.e., ϵT(TH) = 0. At an arbitrary temperature Tr, the
thermal strain can then be written as

T T T( ) ( )T
r r r Hαϵ = − (3)

where αr = 1.84 × 10−4/°C is the thermal expansion coefficient
(CTE) of Vero (Figure S6). The mechanical strain ϵM(T) in
each step in a shape memory cycle is shown as follows
(detailed derivations under both strain and stress control
modes are shown in the Supporting Information).
(a) In step 1, the lattice structure deformed at a high

temperature T = TH with an applied stress σ0. At T = TH, all of
the glassy phases are turned off. Thus, only the equilibrium
phase is working: E(T = TH) = 3NkTH, where N is the cross-
link density of the shape memory polymer and k is
Boltzmann’s constant.40 From eq 1, the mechanical strain
can be solved as
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(b) In step 2, temperature decreases from TH to TL while
holding the applied stress σ0. As T approaches Tg, new phases
are generated one by one. Assuming that as T decreases from
T0 to T1 = T0 − ΔT1, the first glassy phase forms and starts to
carry load with the equilibrium branch. ϵM(T1) can be solved
as
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where E1 is the stiffness of the first glassy branch as shown in
Figure 2a.
As T decreases from Ta to Ta+1 = Ta − ΔTa+1, a new glassy

phase ΔEa+1 is formed with strain Δϵa+1. The strains in all
working branches, including both elastic and working glassy
branch, will change by an amount of Δϵa+1. The mechanical
strain can be calculated as
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where ϵi
0 represents the mechanical strain of the lattice

structure when the ith glassy branch starts to work.
(c) In step 3, the holding stress is released at low

temperature T = TL. All of the n glassy branches are switched
on. After the stress is released, the strain change in each phase
Δϵ can be calculated as

i

k
jjjjjj

y

{
zzzzzzf f T

NkT E
T( ( ))

3
( )1 M

L
0

L g

M
L

σ
Δϵ = ϵ −

+
− ϵ−

(7)

where E Ei
n

ig 1= ∑ = . The mechanical strain after unloading
ϵu
M(TL) is given as

T T( ) ( )u
M

L
M

Lϵ = ϵ − Δϵ (8)

where ϵM(TL) is obtained by setting Ta+1 = TL in eq 6. The
shape fixity ratio Rf of the lattice structure, which quantifies the
ability of the SMP to fix the programmed geometry after
unloading is then calculated as

R
T
T

( )
( )f

u
M

L
M

L
=

ϵ
ϵ (9)

(d) In step 4, the temperature increases from TL to TH. As
the temperature increases, the glassy phases turn off one by
one and corresponding strain stored in each glassy phase is
released. This process is similar to step 2 except the glassy
phases are disconnected one by one.

Finite Element Simulations. To analyze the shape
memory effects of the designed lattice structures, finite
element (FE) simulations are conducted using the commercial
software ABAQUS (3DS Dassault Systemes, France). The
thermomechanical behaviors of the SMP as shown in Figure 2b
are modeled by the multibranch model. The model parameters
obtained in Table S1 are used in FE simulations. The applied
boundary conditions are identical to the experiments. The
thermally coupled element is used to perform the calculation.
The finite element simulation details are shown in the
Supporting Information.

Figure 3. Shape memory behaviors of the rectangular lattice. Comparison of the (a) theoretical predicted, (b) FEM simulated, and (c)
experimental shapes of a rectangular lattice at various temperatures in the recovery step. (d) Corresponding theoretical predicted (blue), FEM
(red), and experimental (black) shapes of a periodical unit. (e) Experimental and theoretical horizontal strain of the preprogrammed rectangular
lattice structure as a function of the temperature in the recovery step. (f, g) theoretical predicted shape memory behaviors of the rectangular lattice
with the change of L and θ0, respectively.
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■ RESULTS AND DISCUSSION

Validation of the Theoretical Model. Figure 2a
compares the theoretically predicted and FE simulated
stress−strain curves of a rectangular lattice under uniaxial
tensile stress with the experiments, and they compare well. It
indicates that the theoretically derived f(L,R,w,θ0,ϵ) can be
used to characterize the geometrical nonlinearity of the
rectangular lattice. The theoretical predicted (dashed curves)
shape memory behaviors of the rectangular lattice are then
compared with the experimental results (solid curves) as
shown in Figure 2d. The theoretical predicted shape memory
behaviors of a full strip where f(ϵ) = ϵ is also shown in Figure
2c. Stress control mode is used. It can be seen that the
theoretical results show good agreements with the experiments.
However, there is some discrepancy. It may result from the
boundary effect of the lattice structure and the hysteresis effect
of the SMP material. Interestingly, the theoretical predicted
and experimental measured shape recoveries of the rectangular
lattices agree better than those of the full solid strip. This is
due to the difference of the local strains of both structures in
the programming step. Even though the programmed strain for
the lattice structure is ∼50%, the local strain of the material is
generally smaller than 3% (Figure S8). In contrast, the local
strain of the full solid strip equals the programmed strain,
which is more than 5% everywhere. Larger local strain in the
full solid strip may lead to irreversible plastic deformation and
thus lower the shape recovery ratio.
Design of the Rectangular Horseshoe Lattice

Structures. The validated model could capture the shape of
the lattice structure at various temperatures during a full shape
memory cycle and is then used to design the horseshoe lattice
structures by tuning the geometrical parameters. Figure 3
presents the theoretical predictions, FE simulations, and the
experiments of the recovering shapes of a preprogrammed
rectangular lattice structure at various temperatures in the

recovery step (Supporting information Videos 1 and 2). The
geometrical parameters used are w = 0.133 mm, R/w = 10, d/w
= 7.5, L/w = 5, and θ0 = π/2. The lattice structure is
programmed with an axial strain of 80%. The theoretical
predictions of a single periodical unit and the lattice structure
by repeating the units along longitudinal and transverse
directions are displayed. It should be noted that the theoretical
prediction neglects the boundary effect, while the FE
simulations take into account the boundary effect as can be
seen from Figure 3a,b. Figure 3d compares the deformed
shapes of the theoretical, FE simulated, and expeirmental
periodical units. The deformed shapes in all of the experi-
ments, theoretical prediction, and FE simulation agree well.
The corresponding quantitatively comparisons of the axial

strain between the experimental and theoretical rectangular
horseshoe units are shown in Figure 3e. The axial strain in the
experiments is chosen as the average axial strain of the two
central units. Their coordinates are obtained by ImageJ and
then processed by a Matlab code. It can be observed that the
theory predicts well the longitudinal strains of the lattice
structure at various temperatures. The shapes recover
significantly between T = 50 and 60 °C in both the
experiments and theoretical predictions, which is around the
Tg of the Vero material.
Two geometrical parameters L and θ0 are used to program

the shape recovery behavior of the lattice structures in Figure
3f,g, respectively. Other geometrical parameters are fixed. The
applied stress is set as 1 kPa. It can be seen that the strain of
the lattice structures increases as the length L increases,
because the longitudinal strain is mainly due to the rotation of
the beams and therefore it is larger for a longer beam. On the
other hand, the longitudinal strain decreases as θ0 decreases
from 90° to 30°, as shown in Figure 3g, as the rectangular
lattice structure with smaller θ0 is more difficult to deform.

Figure 4. Shape memory behaviors of auxetic triangular lattice. Comparisons of the (a) theoretical predicted, (b) FEM simulated, and (c)
experimental deformed shapes of a triangular horseshoe lattice at various temperatures. (d) The corresponding theoretical predicted (blue), FEM
(red), and experimental (black) shapes of a periodical unit. Experiments and theoretical predictions of the (e) horizontal and (f) vertical strains of
the triangular lattice structures as a function of the temperature at the recovery step. (g) Theoretical predicted Poisson’s ratio in a shape memory
cycle of the triangular lattice with different L.
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Design of the Auxetic Structures. Auxetic structures, i.e.,
structures with negative Poisson’s ratios, are designed as shown
in Figure 4. The theoretically predicted, FE simulated, and
experimental recovery shapes of the preprogrammed triangular
horseshoe lattice structures are plotted at various temperatures
T = 45, 63, and 70 °C in the recovery step (Supporting
Information Videos 3 and 4). Figure 4d compares the
deformed shapes of the theoretical, FE simulated, and
expeirmental periodical units in the triangular lattice. The
geometrical parameters of the microstructures are the same as
those used in rectangular horseshoe lattices. It can be observed
that the triangular lattice structures show auxetic behaviors,
where the structure expands at the transverse direction when
stretched in the axial direction. In order to quantitatively
investigate the auxetic behavior, both the theoretical and
experimental horizontal and vertical strains are plotted against
temperature in Figure 4e,f. It can be seen that the vertical

strain has the same sign with the horizontal strain, indicating
that they expand or contract at the same time. Thus, the lattice
exhibits positive Poisson’s ratio. The experimental horizontal
strain agrees reasonably with the theoretical prediction, while a
small lag on the temperature exists. This lag is due to the
viscoelasticity of the Vero material. There exists some
discrepancy between the experimental and theoretical vertical
strain, especially at lower temperatures. It may result from the
boundary effect which is neglected in the theoretical model.
The effects of L on the Poisson’s ratio of the triangular

lattice are plotted in Figure 4g. The programming stress is 5
kPa. It can be seen that (1) the Poisson’s ratio is always
negative, (2) the magnitudes of the Poisson’s ratios increase
with the increase of L, and (3) the magnitudes of the Poisson’s
ratios decrease with the increase of T at the recovery step,
especially at T ≅ Tg. For example, the magnitudes of the
Poisson’s ratios increase from 0.2 to 0.35 as L/w increases from

Figure 5. Bending of the triangular lattice subjected to non-uniform heating. (a) Change of temperature distribution at the top and bottom halves
of the triangular lattice with normalized time t at the recovery step. (b) Quantitative comparisons of the experimental and FE simulated vertical
displacements of the lattice normalized by the height of the lattice with t. (c) Experiments and (d) FE simulations both showing that the lattice
undergoes bending deformation when subjected to a non-uniform heating in the recovery step.
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0 to 5 at T = 26 °C in the recovery step. As T increases from
50 to 70 °C, the magnitudes of Poisson’s ratios decrease from
∼0.46 to ∼0.34.
Design of Intermediate Shapes by Inhomogeneous

Stimulus. By applying a non-uniform stimulus in the recovery
step, the shape recovery of the horseshoe lattice can be
designed. For example, the experiments and FE simulations are
conducted for a prestretched triangular lattice subjected to a
temperature gradient as shown in Figure 5 (Supporting
Information Videos 5 and 6). In the experiment, the
temperature of the water in the tank where the lattice is
immersed is higher at the top area and decreases continuously
toward the bottom, and thus generates a temperature gradient
on the lattice structures. During the recovery step in the FE
simulation, the temperature at the top half of the lattice is set
to increase linearly, while that at the bottom half is set to
increase quadratically, as shown in Figure 5a. t is normalized by
the whole time in the recovery step. It can be observed that the
triangular units at the upper rows (higher temperature regions)
recover faster than those at the bottom (lower temperature
regions), and therefore the lattice bends toward higher
temperature directions. As the temperature increases again,
the whole structure reaches the rubbery state and the triangular
lattice recovers to its initial un-deformed state. The
experimental vertical displacement is quantitatively compared
with that in the FE simulation. The vertical displacement
normalized by the height of the lattice structure is plotted
against the normalized time t in Figure 5b. Both the
experiment and FE simulation show that the lattice undergoes
a large vertical displacement at t ∼ 0.75.
Design of 3D Horseshoe Lattice. In this section, the

shape memory behaviors of a 3D horseshoe lattice under axial,
bending, and twisting loadings are investigated. The unit
structure of the 3D horseshoe lattice is made by replacing the
straight edge of a cube with single horseshoe structure as
shown in Figure 1b. The geometrical parameters of the
horseshoe structure are R = 10 mm and L = 0. The cross-

section of the horseshoe structure is a circle with the radius r =
1 mm. For the 3D lattice, the relation between the normalized
loading and displacement under axial, bending and twisting
loadings can be represented by

F T E T f M T E T f

M T E T f

( , ) ( ) ( ), ( , ) ( ) ( ),

and ( , ) ( ) ( )

a a b b

t t

κ κ

α α

ϵ = ϵ =

= (10)

where Fa(T,ϵ), Mb(T,κ), and Mt(T,α) are the applied axial
force and the bending and twisting moments, respectively; ϵ is
the axial strain; κ is the bending curvature; α is the angle of
twist per unit length; and fa(ϵ), fb(κ), and f t(α) characterize
the dependences of the axial force and bending and twisting
moments normalized by the modulus E(T) on ϵ, κ, and α,
respectively. By replacing eq 1 with the above relations, their
shape memory behaviors under axial, bending, or twisting
loading can be studied using the developed theoretical model.
Since fa(ϵ), f b(κ), and f t(α) are difficult to directly calculate

using the theoretical method, we use the FEM to obtain the
simulation values at room temperature T = 25 °C with E = 1.2
GPa. Panels a−c of Figure 6 shows the loading−displacement
curves of the 3D horseshoe under axial, bending and twisting
loadings in FEM simulations (Supporting Information Video
7). A simple 1 × 1 × 2 structure (1 unit in x direction, 1 unit in
y direction, and 2 units in z direction) is used. It can be seen
that there is a strain−stiffening effect when the 3D horseshoe is
under axial loading; i.e., the modulus of the structure increases
with the increase of axial strain ϵ. On the contrary, the bending
modulus decreases with the increase of the bending curvature
κ. The twisting modulus remains almost a constant with a
small increase when the twist is large.
The fa(ϵ), fb(κ), and f t(α) in the axial, bending, and twisting

loadings are then incorporated into the theoretical framework
to study the shape memory behaviors of the 1 × 1 × 2 3D
horseshoe structure under axial, bending, and twisting loadings,
respectively. The theoretical shape memory behaviors under
strain control mode are shown in Figure 6d−f in dashed

Figure 6. Shape memory behaviors of a 1 × 1 × 2 3D horseshoe lattice. (a−c) Loading−displacement curves of the lattice structure under axial,
bending, and twisting loadings at room temperature, respectively. Insets show the deformed shapes at different strains. (d−f) Theoretical (dashed
curves) and FE simulated (solid curves) shape memory behaviors of the 3D horseshoe structure programmed by axial, bending, and twisting
loadings in strain control mode, respectively.
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curves. Strain control mode is used. The shape memory
behaviors of the same 3D structure are also studied by FEM
simulations as shown in the solid curves to validate the
theoretical model (Supporting Information Video 8). It should
be noted that, even for this simple 1 × 1 × 2 structure, the
computation cost to study the shape memory effect in FEM is
quite large. The theoretical results and the FEM results agree
reasonably well. However, there are some discrepancies. The
change of the loading and displacement in the theoretical
model is sharper than those in the FEM simulations. The
reason could be the use of a phase evolution model in the
theoretical modeling, in contrast to the use of the multibranch
model in the FEM simulation. In the multibranch rheological
model, the behavior of the polymer depends on time and the
response is smoother.
The incorporation of the loading−displacement relation in

FEM in room temperature to the theoretical framework could
predict the shape memory behavior of the 3D lattice structure.
This method of combining the FEM and theoretical framework
significantly reduces the computational cost, and thus the
prediction of the shape memory behaviors of more complex
structure is made possible. For example, the shape memory
behavior of 2 × 2 × 4 3D horseshoe lattice is constructed in
Figure 7. The loading−displacement in room temperature
under axial, bending, and twisting is investigated using the
FEM as shown in Figure 7a−c (Supporting Information Video
9). The normalized loading−displacement relations fa(ϵ),
f b(κ), and f t(α) are then fitted by a fifth-order polynomial
function and incorporated into the theoretical framework to

study their shape memory behaviors. The shape memory
behaviors under axial, bending, and twisting programming are
plotted in Figure 7d−f. The corresponding deformed shapes at
t = 37.5 (T = 51 °C in the cooling step) and 75 min (T = 66
°C in the recovery step) are plotted in Figure 7g−i.
Comparing to the shape memory behavior of 2D lattice, the

behavior of 3D structures under inhomogeneous heating is
more complex. In order to investigate this process, the whole
deformation in the shape recovery under inhomogeneous
heating can be separated into two steps. The first step is the
shape recovery without any constraint. In this step, the parts
subjected to the same heating are recovered freely. Thus, the
change of the shape may be continuous, and the shapes may
not be compatible; i.e., the parts with different heating may
overlap, or voids may exist between them. At the second step,
an elastic deformation is introduced to maintain compatibility.
As shown in Figure S9, the first step maps (a) the shape at TH
to (c) a virtual configuration which is locally stress-free. The
elastic deformation then maps the (c) virtual configuration to
(b) the recovered shape in order to maintain continuity of the
structures. The overall deformation is the composition of the
deformations in the two steps. The deformed shapes and
modulus of the structures in the first step can be calculated
using the theoretical framework. The second step still needs
the use of FEM, especially for complex structure and heating.
In this work, the phase evolution model is used to obtain the

analytical solutions for lattice structure. The development of
the analytical solutions significantly reduces the computational
cost and facilitates the inverse design of the programmable

Figure 7. Shape memory behaviors of a 2 × 2 × 4 3D horseshoe lattice. (a−c) Loading−displacement relations of the lattice under axial, bending,
and twisting loadings at room temperature. Insets show the deformed shapes are various strains. (d−f) Theoretical predicted shape memory
behaviors of the lattice programmed by axial, bending, and twisting loadings in stress control mode. (g−i) Corresponding predicted shapes at t =
37.5 (T = 51 °C in the cooling step) and 75 min (T = 66 °C in the recovery step), respectively.
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shape changing behavior. Comparing to the phase evolution
model, the multibranch rheological model is more accurate and
the dependence of the polymer behaviors on time is taken into
account by the introduction of the viscoelastic dashpot in the
branches. But the analytical solutions would be difficult to be
obtained. From Figure 6d−f, it can be seen that the shape
changing behaviors predicted by the multibranch model are
smoother (solid curves obtained by FEM simulations alone)
than those predicted by the phase evolution model (dashed
curves obtained by combining FEM and theoretical model).
The use of the multibranch model to predict the shape
changing of the 3D lattice would be interesting and worth
studying in the future.

■ CONCLUSION
In summary, we study the shape changes of 3D printed lattice
structures under a thermal stimulus by a combination of
experiments and theory and FE simulations. The shape
changing behaviors of the 2D rectangular and triangule
horseshoe lattice structures and 3D horseshoe lattice are
shown as an example. The theoretical model is developed on
the basis of the phase evolution and can accurately capture the
lattices’ shape changes. In contrast to the usual linear stress−
strain behavior, a function is used to characterize the nonlinear
stress−strain behaviors of the lattice structure resulting from
the geometrical nonlinearity. We develop an analytical phase
evolution model to predict the shape memory effects of 3D
printed lattice structures under both strain and stress control
mode. With the developed model, we design the shape changes
of 3D printed rectangular/triangular modified horseshoe lattice
structures that can exhibit large controllable deformations
subjected to a thermal stimulus. By combining the loading−
displacement behaviors of 3D lattices obtained in FEM and the
theoretical method, the shape change of 3D lattice under axial,
bending, or twisting loading can also be predicted. Thus, it
provides a general framework to design the shape memory
effect of 3D lattice. We fabricate the designed rectangular/
triangular horseshoe lattices and conduct FEM simulation to
validate the theoretical model. All of the theoretical,
experimental, and FE simulated results agree well, which
proves the effectiveness of the theoretical method. By
combining experiments, theoretical modeling, and FE simu-
lation, this work helps to illustrate the deformation mechanism
of 3D printed shape changing lattice structures and provides
theoretical guidelines for the design of 3D printed program-
mable lattice structures.
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