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Matrix-Addressed Flexible Capacitive Pressure
Sensor With Suppressed Crosstalk for

Artificial Electronic Skin
Sujie Chen , Ming Li, Yukun Huang , Haipeng Xu, Guoying Gu , and Xiaojun Guo , Member, IEEE

Abstract— Matrix-addressed flexible pressure sensors,
being able to accurately measure both local contact force
and spatial distribution, are pursued for many electronic
skin applications. One key issue to be addressed is that
the local force being applied onto the target areas may
be passed to the neighboring pixels through deformation
of the touched top electrode layer. It causes significant
signal crosstalk and also loss of measurement accuracy.
A new top electrode layer structure is proposed with the
development of processes for matrix-addressed pressure
sensor systems. It is composed of a patterned layer of high
Young’s modulus and a low-modulus encapsulation layer.
The former is able to sustain a relatively high processing
temperature for forming reliable and high-density electrical
connections.The latter is to protect the patterned layer while
having low Young’s modulus to minimize the spreading of
local deformation at the pressed pixel to the surrounding
ones. A 10 × 10 matrix-addressed flexible capacitive pres-
sure sensor system is constructed to verify this design,
showing effective suppression of the pixel-to-pixel signal
crosstalk and improvement of measurement accuracy. The
flexible pressure sensor system is integrated onto a pros-
thetic hand, showing capabilities of differentiating details of
massage balls.

Index Terms— Crosstalk, electronic skin (E-skin), laser
patterning, pressure sensor array.

I. INTRODUCTION

ELECTRONIC skin (E-skin) sensor systems, being able to
accurately measure both local contact force and spatial

distribution, are pursued for a wide range of promising applica-
tions in personal healthcare [1]–[4], intelligent robots [5], [6],
medical surgery [7], [8], and biomimetic prosthetics [9], [10].
In the past, intensive studies have been carried out on materials
and processing techniques for developing flexible pressure
sensors based on various transduction mechanisms, including
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capacitive [11], resistive [12], piezoelectric [13], and tribo-
electric [14] transducers, to construct such E-skin systems.
Although these sensors show capabilities of measuring weak
pressure signals, most of them are individual devices or in
arrays of very low resolution and are not applicable for
measuring spatial pressure distribution details. To develop
matrix-addressed pressure sensors of relatively high resolution,
vertical structures with the active layer being sandwiched
between the bottom and the top electrode layers are commonly
adopted [15], [16]. One key issue to be addressed is that the
local force being applied onto the target areas may be passed
to the neighboring pixels through deformation of the touched
top electrode layer. It causes significant signal crosstalk and
also loss of measurement accuracy [17]–[19]. To reduce
the crosstalk and improve measurement accuracy, a possible
approach is through using low Young’s modulus top electrode
layers [20]–[23]. However, such low Young’s modulus layers
are prone to distortion under higher temperatures during the
processes, especially when bonding external wire connections,
and are thus difficult for forming reliable electrical connec-
tions for matrix-addressed sensor systems [24]–[26]. Structure
design using a rigid spacer with reduced pixel electrode area
was shown to be able to significantly reduce the crosstalk, but
the sensitivity was deteriorated [27].

In this article, a new top electrode layer structure is proposed
with the development of processes for matrix-addressed pres-
sure sensor systems. It is composed of a patterned layer of high
Young’s modulus and a low-modulus encapsulation layer. The
former is able to sustain a relatively high processing temper-
ature for forming reliable and high-density electrical connec-
tions. The latter is to protect the patterned layer while having
low Young’s modulus to minimize the spreading of local
mechanical deformation at the pressed pixel to the surrounding
ones. A 10 × 10 matrix-addressed flexible capacitive pressure
sensor system is constructed to verify this design, showing
effective suppression of the pixel-to-pixel signal crosstalk and
improvement of measurement accuracy. The flexible pressure
sensor system is integrated onto a prosthetic hand, showing
capabilities of differentiating details of the massage balls.

II. METHOD

A. Structure Design

As shown in Fig. 1(a), in a conventional sandwich structure
pressure sensor design, a top electrode layer of high Young’s
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Fig. 1. Schematic illustration of cross-sectional view of deformation of
(a) conventional and (b) designed sensor arrays under pressure.

Fig. 2. (a) Experimental setup for measuring the real-time tensile
force. (b) Measured tensile force as a function of the strain for the
stretchable encapsulation film of PDMS and PDMS/Ecoflex with different
thicknesses.

modulus is needed to form reliable electrical connections, but
pressure-induced mechanical deformation will cause signal
crosstalk to the neighboring pixels. This article proposes a
new structure design for the top electrode layer, as illustrated
in Fig. 1(b), which is composed of a patterned high Young’s
modulus layer and a low Young’s modulus encapsulation film
on the top. The former is able to sustain a high processing
temperature for making fine-resolution electrodes and reliable
electrical connections. The latter is only for the protection of
the patterned layer, and thus low Young’s modulus material
can be used to minimize the spreading of local mechanical
deformation at the pressed pixel to the surrounding ones.

As shown in Fig. 2(a), such an encapsulation film is
obtained by stacking two low Young’s modulus elastomer
layers of polydimethylsiloxane (PDMS, Sylgard 184, Dow
Corning) and Ecoflex silicone elastomer (0030, Smooth-on)
with a bar coating process [28]. The PDMS layer is used to
be easily delaminated from the polyvinyl pyrrolidone- (PVP,
k90, Sigma Aldrich) coated glass substrate. The film thickness
was controlled by varying the layer number of PI tapes, which
were put on both sides of a glass substrate as the spacer during
the processes. The mixed solution of PDMS prepolymer and
its curing agent with a proportion of 10:1 was coated on
a PVP-coated glass substrate with the bar moving speed of
2 mm/s, followed by annealing at 100 ◦C for 30 min. Ecoflex
silicone elastomer was then coated on the PDMS layer and

Fig. 3. Schematic illustration of the fabrication process of the pressure
sensor arrays with patterned top electrode layer and stretchable encap-
sulation film.

annealed at 100 ◦C for 10 min. Finally, the encapsulation film
was peeled off from the PVP surface directly.

The tensile force of the fabricated different encapsulation
films under stretching was measured as shown in Fig. 2(b).
The films were cut into the same size of 1 cm × 5 cm
and stretched by a tensile testing stage, with the tensile
force being measured by a force gauge (HP-20, Handpi).
It can be seen that thinner PDMS films have smaller tensile
forces. Combing the lower Young’s modulus Ecoflex, the
100-μm-thick PDMS/Ecoflex bilayer structure film presents
the smallest tensile force and is thus chosen for fabricating
the sensor array.

B. Construction of Sensor Array System

Based on the above design, a matrix-addressed capaci-
tive pressure sensor system was constructed as illustrated in
Fig. 3. The bottom electrodes and the connecting wires on a
50-μm-thick PI substrate were formed through screen print-
ing silver paste (HS-200MS-2F, Kunshan Hisense Electronics
Company) followed by an annealing process at 140 ◦C for
20 min. The patterned top PI strips with square-shaped pixel
electrodes and narrow connecting lines were obtained through
laser cutting (VLS3.50, Universal Laser System Company).
The square shape of the electrode was chosen for ease of
processing with an area to obtain large enough capacitance
values being detectable via the readout circuit. For processing
needs, the pixel electrodes on the same row were physically
connected, which was different from the ideal structure as
shown in Fig. 1(b). It would cause certain spreading of local
mechanic deformation along the row direction. To minimize
that, the interpixel connection lines should be minimized.
In this article, the width of the connection lines was 1 mm,
which was limited by the laser patterning process. The top
electrodes were bonded to the wires on the bottom PI substrate
with an anisotropic conductive film (ACF, AC-7813KM-25,
Hitachi). These wires were then connected to a flat flexible
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Fig. 4. (a) Schematic illustration of the designed DAQ system.
(b) Measurement setup for characterization of the sensor array.

cable (FFC) also through ACF bonding. The temperature,
pressure, and press time of the ACF bonding process were
set to be 220 ◦C, 1 MPa, and 40 s, respectively, to achieve
reliable connections. Therefore, the PI film of high Young’s
modulus is required. A 2-mm-thick porous PDMS film with
a high density of air void microfeatures was inserted between
the bottom and the top electrodes as the pressure-sensitive
layer. The film was fabricated by adding a foaming agent
into the PDMS prepolymer mixture as described in [29].
Finally, the prefabricated PDMS/Ecoflex encapsulation film of
low Young’s modulus material was laminated on the top to
complete the fabrication of a 10 × 10 pressure sensor array.
The pixel area is 6 mm × 6 mm with the sensing electrode
area of 4 mm × 4 mm. A sensor array of the same resolution
was fabricated based on the conventional structure using a
continuous PI top electrode layer for comparison. It has the
same dimensions of the pixel and the pixel electrode with those
of the sensor array based on the proposed structure.

C. Characterization

The sensing performance of the individual sensor devices
based on the porous PDMS dielectric layer was characterized
in the previous work [29] and also showed good environmental
stabilities [30]. In this article, to read out the capacitance
changes in the sensor array upon applied pressure, a data
acquisition (DAQ) circuit board was designed as depicted
in Fig. 4. The circuit board consists of two high-resolution
capacitance-to-digital converters (CDCs) (AD7142, analog
devices), a microcontroller (MCU) (STM32F0, ST micro-
electronics), and a Bluetooth module (BC-04-B, Cambridge
Silicon Radio). The CDC acquires the capacitance values from
the connected sensor array and converts them into digital
voltage signals. The MCU receives the data from the CDC
through a serial peripheral interface (SPI) and transmits the
processed data to the smartphone via the Bluetooth module.
The whole DAQ system is powered by a 3.3-V Li-ion battery.
A program developed in Android was run in the smartphone
to display the test results in real time.

III. RESULTS AND DISCUSSION

A. Simulation

3-D finite element numerical simulation with COMSOL was
performed to compare the sensing performance of a 3 × 3

Fig. 5. (a) 3-D simulation molds of the pressure sensor arrays
with conventional and designed structure. (b) Simulation results of the
thickness changes in the pressure-sensitive film of the sensor array
with a conventional structure, designed structure with a 200-µm-thick
and 1-MPa Young’s modulus encapsulation film, designed structure with
a 100-µm-thick and 1-MPa Young’s modulus encapsulation film, and
designed structure with a 100-µm-thick and 0.1-MPa Young’s modulus
encapsulation film, respectively.

sensor array upon a 0.1-N load on the central pixel based on
the conventional structure and the proposed design, as illus-
trated in Fig. 5(a). An encapsulation film of different thickness
and Young’s modulus was used for the latter. The thickness
values of each layer and the sizes of the pixel electrodes are
the same as the fabricated sensor arrays. The simulations are
performed for a qualitative comparison of the performance
difference instead of calibration with the measurement data.
From the simulation results [Fig. 5(b)], it can be clearly seen
that the proposed design exhibits suppressed crosstalk and
more accurate measurement of the applied pressure compared
with the conventional structure, and its performance can be
enhanced with a thinner encapsulation film of lower Young’s
modulus.

B. Characterization of the Sensor Array

Measurements with the fabricated 10 × 10 pressure sen-
sor array further verify the proposed design. As shown in
Fig. 6(a), different counterweights were placed on a 3-D
printed acrylonitrile butadiene styrene (ABS) pillar (245 mg)
to apply different pressure onto the same region. The measured
capacitance changes (�C) in the pixel upon the applied
pressure for the pressure sensor arrays based on different
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Fig. 6. (a) Measurement setup for loading the pressure on the surface
of the sensor array. (b) Measured capacitance changes (ΔC) and the
evaluation of the crosstalk (EC) upon the applied pressure for the
pressure sensor arrays with a conventional structure, designed structure
with a 200-µm PDMS encapsulation film and designed structure with a
100-µm PDMS/Ecoflex encapsulation film.

designs are shown in Fig. 6(b). It can be seen that �C upon
the applied pressure for the pressure sensor based on the
proposed design is significantly enhanced compared with that
of the conventional design. As a result, �C of the sensor
is further increased with PDMS/Ecoflex encapsulation film,
which agrees well with the previous simulation results.

A quantitative figure of metric is used for evaluating the
crosstalk as described below

Ec = σ

Cpre
× Ssur

Spre
=

√√√√
∑8

i=1 C2
sur

8C2
pre

× Ssur

Spre

where σ denotes the standard deviation of the capacitance
changes in the surrounding pixels, Cpre and Csur denote the
capacitance change in the pressed pixel and the surrounding
pixels, respectively, and Spre and Ssur denote the area of
the pressed pixel and the surrounding pixels, respectively.
The measured EC values upon different applied pressure for
the sensor arrays of different designs are given in Fig. 6(b).
Obviously, the proposed design with a thinner and lower
Young’s modulus encapsulation film presents well-suppressed
crosstalk. A four-point pressure test was applied to the pressure
sensor arrays using a 3-D printed ABS quadruped structure and
placing a 100-g counterweight on the top as shown in Fig. 7.
The measured response for both sensor arrays corresponds
well to the locations of the four points. The much sharper
response of the sensor array based on the proposed design indi-
cates well-suppressed crosstalk. The exhibited larger crosstalk
of the proposed structure along the row direction than that
along the column direction [Fig. 7(b)] might be caused by
the spreading of deformation through the interpixel connection
lines.

C. System Demonstration

Finally, to demonstrate its potential for artificial E-skin
applications, the pressure sensor array based on the proposed
structure was attached to the palm of a prosthetic hand,
as shown in Fig. 8(a). Two different massage balls were placed
on it for the test. One has a smooth surface and a weight

Fig. 7. Measured capacitance changes (ΔC) in the pressure sensor
arrays with (a) conventional structure and (b) designed structure with a
100-µm PDMS/Ecoflex encapsulation film.

Fig. 8. (a) Photograph of the designed pressure sensor array inte-
grated on the palm of the prosthetic hand with a massage ball with a
smooth surface and a massage ball with the thorny surface, respectively.
(b) Measured capacitance changes (ΔC) in the designed pressure
sensor array with a massage ball with a smooth surface and a massage
ball with the thorny surface on the surface, respectively.

of 150 g and the other with a thorny surface has a weight
of 75 g. Fig. 8(b) compares the measured pressure distribution
through the sensor system with the two balls being put on
it, respectively. It can be seen that the measured locations
and capacitance changes in the pressure peaks, and pressure
distribution contours are quite different. The results prove the
capability of such a matrix-addressed pressure sensor system
to be integrated as an artificial E-skin for object recognition.

IV. CONCLUSION

In summary, a new top electrode layer structure is developed
for matrix-addressed pressure sensor systems, composed of a
patterned layer of high Young’s modulus and a low-modulus
encapsulation layer. The former is able to sustain a rela-
tively high processing temperature for forming reliable and
high-density electrical connections. The latter is to protect the
patterned layer while having low Young’s modulus to mini-
mize the spreading of local deformation at the pressed pixel
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to the surrounding ones. Both the simulation and experimental
results prove this design to be able to effectively suppress
the pixel-to-pixel signal crosstalk and improve measurement
accuracy. The fabricated flexible matrix-addressed sensor sys-
tem is attached to a prosthetic hand, showing capabilities of
differentiating details of the massage balls. This article would
provide a useful technical route for realizing high-resolution
and low-crosstalk artificial E-skin sensor systems in human–
machine interaction and prosthetics applications.

The design and processing technologies have the following
limitations to be addressed for further work.

1) For processing needs, the pixel electrodes on the same
row are still physically connected, causing obvious
crosstalk along the row directions. To address this
problem, the possibility of implementing interpixel con-
nection lines in stretchable shapes (e.g., zigzag) would
be considered.

2) To down-scale the feature size of the sensor structures
and the interconnects for higher resolution sensor arrays,
the thickness of the sensitive layer needs to be decreased
and the process resolution should be improved.

3) The current design is based on qualitative analysis.
Development of a mathematic model to quantitively
describe the dependence of the sensing performance and
crosstalk on the structure parameters would be able to
provide a more straightforward method for the optimal
design of the sensor array system.
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