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ABSTRACT

A biological organism, such as an octopus tentacle or elephant trunk, exhibits complex 3D spatial trajectories. Although soft manipulators
showing 2D in-plane deformations have been extensively studied and applied in many areas, the design method of soft manipulators with a
mathematical model that can follow a particular 3D spatial trajectory remains elusive. In this paper, we present a methodology to automati-
cally design bio-inspired multi-segment pneu-net soft manipulators that can match complex 3D trajectories upon single pressurization. The
3D motions can be characterized by a combination of twisting, bending, and helical deformations, which are enabled by the design of the
soft segments with programmable chamber orientations. To inverse design the soft manipulators with trajectory matching, we develop an
analytical framework that takes into account the material nonlinearity, geometric anisotropy, and varying loading directions. The spatial
trajectory can be reconstructed by combining with a 3D rod theory. In this sense, multi-segment soft manipulators with trajectory matching
are inversely designed by varying the geometric and material parameters. We further demonstrate the grasping of complex objects using the
designed soft manipulators. The proposed methodology has immense potential to design soft manipulators in 3D space and broaden their
application.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054468

I. INTRODUCTION

Biological organisms that can exhibit 3D spatial motions are
ubiquitous in nature. Examples include bacteria flagella for locomo-
tion,1 plant tendrils for climbing,2 and elephant trunks for grasping.3

Inspired by nature, many soft manipulators are developed to mimic
the complex motion of animals and match specific trajectories,4–7

which introduce promising potentials in various applications, such as
implantable and wearable devices,8–11 robots moving through unpre-
dictable terrains,12,13 and gripper grasping objects of unknown
geometry.14,15

Although there has been significant progress of soft manipulators
owing to the inherent compliance, easy fabrication, and ability to
achieve complex output motions from a simple input, the advance-
ment of this field is hindered by numerous challenges, such as
dynamic models, modeling contact, and modeling designs with multi-
ple actuators and hyper redundancy. However, these challenges are
difficult to address, as soft robotics is still in its early stage. Therefore,
much research currently focuses on the more fundamental problem:

how to design the soft manipulators for a particular 3D trajectory
motion using a single actuation based on the mathematical modeling.
To this end, researchers have made efforts to develop and model soft
manipulators.

A typical example is the McKibben actuators, which consist of an
elastomeric tube wrapped in inextensible fibers and show 1D elongation
or contraction.16–19 To broaden the applications of soft manipulators,
many soft manipulators exhibiting 2D in-plane motions are devel-
oped,14,20,21 such as starfish grippers;22 soft tentacles;23 tethered and
untethered quadruped walkers;24,25 tripedal jumping robots;26 soft
gloves,27 etc. Several models have been proposed to model the 2D
motions of the soft manipulators. For example, a model based on
Euler’s theory of the elastica is proposed for pneu-net soft actuators, and
the shape and curvature of the bending deformation are well captured.28

A theoretical model for pneu-net soft actuators is proposed based on
the friction laws, which can be used to control the motion andmaximize
the displacement of the soft robot along a prescribed direction.29 The
bending behaviors of soft fiber-reinforced actuators are investigated.30
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Although soft manipulators have allowed for various innovative
applications, there is an urgent need for design methods to efficiently
and systematically design manipulators following complex 3D trajec-
tories. This area is still in its infancy, and several studies have been
conducted to show how to form complex deformations using a single
actuation.31–33 While soft manipulators showing 2D in-plane defor-
mations have been extensively studied, the design method of soft
manipulators with an analytical model that can follow a particular 3D
spatial trajectory remains elusive. Previous models of the 3D soft
manipulators mainly focus on fiber-reinforced soft manipulators.34,35

For example, Connolly et al. developed an analytical model for
fiber-reinforced soft manipulators that exhibits bending, twisting,
elongation, and expansion motions.33 Gong et al. presented soft
manipulators with an opposite-bending-and-stretching structure for
efficient underwater spatial grasping.36

In addition to the diverse functions exhibited by fiber-reinforced
soft manipulators, pneu-net soft manipulators can also demonstrate
complex 3D trajectories by adjusting the chamber distributions.
Compared to the complicated fabrication procedures and the complex
combinations of fibers of the fiber-reinforced soft manipulators, the
pneu-net soft manipulators are easier to be made and the arrange-
ments of chambers are more flexible. Thus, sophisticated 3D trajecto-
ries can be created using pneu-net soft manipulators with simpler
structures, but the design of the pneu-net soft manipulators with 3D
trajectory matching is hindered, mainly due to the lack of appropriate
modeling approaches that take into account the material nonlinearity,
geometric anisotropy and spatial actuation. Although several
approaches were proposed to study the 3D motions,37–41 most of
them are based on the finite element method (FE). While the results
produced by FE models are interesting and compelling, they are chal-
lenging to generate tractable models and inverse design. There are a
few design methods for pneu-net soft manipulators that can match
specific trajectories with a combination of the bending, twisting and
helical deformations in 3D space. Developing analytical models is

desirable for control algorithms and understanding the design param-
eters for soft robots.

Inspired by the octopus tentacles where a single tentacle can
exhibit complex 3D trajectories [Fig. 1(a)], we propose a new design of
pneu-net soft manipulators that can match complicated trajectories in
3D space. The soft manipulator consists of multiple segments [Fig.
1(b)], where each segment shows a different actuation mode: twisting,
in-plane bending, or helical actuation. By combining different seg-
ments, the soft manipulators can exhibit various spatial trajectories
under single input pressure. The bending and helical segments consist
of angled chambers on one side of the soft manipulator, whereas the
twisting segment consists of two sets of aligned chambers on both
sides. By tuning the angles of the chambers, a wide range of twisting,
bending, or helical shapes can be achieved.

To facilitate the design of 3D multi-segment pneu-net soft manip-
ulator with trajectory matching, a theoretical framework is developed to
build the relationship between the manipulator’s deformation and its
geometrical, material, and loading parameters. A nonlinear model based
on a phenomenological orthotropic energy density function is used to
model the twisting segment, which considers the material nonlinearity
and geometric anisotropy. We employ a minimum potential energy
method to model the multiple helical segment soft manipulators. The
deformed shape is then reconstructed using a 3D rod theory, and a
method is developed to visualize the deformed shape. By virtue of the
low computational cost, various 3D trajectories are designed by varying
the geometric, material and loading parameters. It also enables the
inverse design of bio-inspired soft manipulators that follow specific tra-
jectories. The developed method contains the following two main novel
contributions: (1) we propose the design of a pneu-net twisting segment
and develop a nonlinear model to describe its actuation; (2) we propose
an inverse design method to design the soft manipulator’s 3D spatial
trajectories by adjusting the geometric parameters.

This paper is organized in the following manner. The theoretical
model for the soft manipulators is presented in Sec. II and validated by

FIG. 1. Designing a bio-inspired multi-segment soft manipulator that replicates a complex 3D spatial trajectory. (a) A single octopus tentacle’s motion can be characterized by
a combination of twisting, bending and helical deformation. (b) Inspired by the octopus tentacle, soft segments showing twisting, bending and helical deformations are designed
by programming chamber orientations. (c) Shows the schematic of a 3D objective trajectory. (d) Using the design methodology, the geometric, material, and loading parameters
for each segment are output for replicating the objective trajectory.
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experiments and FE simulations in Sec. III. Various multi-segment
soft manipulators are designed in Sec. IV. Conclusions are given in
Sec. V.

II. THEORETICAL MODEL FOR MULTI-SEGMENT SOFT
MANIPULATORS

The schematic of a multi-segment soft manipulator is presented
in Fig. 2(a). We denote each segment’s length and orientation angle as
LðiÞ and hðiÞ, where i¼ 1 to N. N is the number of segments. Each seg-
ment can be a twisting, bending or helical segment. The centerline of
the deformed multi-segment soft manipulator is represented by a
space curve PðsÞ, where P represents the global coordinate of each
point on the deformed arc length s. S represents the original arc length.
To characterize the shape of the soft manipulator, a global coordinate
ðX1;X2;X3Þ and an orthonormal local coordinate ðx1; x2; x3Þ are
used, as sketched in Fig. 2(a). Both coordinates move along the center-
line. x1 is identified as the tangent vector of the centerline. x2 and x3

lie along the width and height directions. The theoretical model for a
single twisting segment is derived next. The theoretical model for the
helical segment is given in Sec. I of the SI. In both models, the gravity
is neglected.

A. Theoretical model for twisting segment

The energy density function of the twisting segment is obtained
first. The relationship between the deformation of the twisting seg-
ment and the input pressure is established next.

1. Energy density function of the twisting segment

As shown in Fig. 2(b)(i), the twisting segment consists of two
sets of aligned chambers with the same angles on both sides. An

internal channel connects the arranged chambers, as shown by the
cross-section in Fig. 2(b)(iii). From the experimental observation,
we find that the amount of twisting in the cross-section is uniform
and the centerline of the deformed twisting segment remains
straight. No obvious warping is observed. Based on the above
observations, the irregular cross-section is simplified to an axisym-
metric cross-section to ease the derivation of analytical solutions, as
shown in Fig. 2(b)(iv). The inner and outer radii Ri and Ro are
obtained by equating the inner empty area and the occupied area
between the original and simplified cross sections. As shown later,
the analytical deformed twisting shapes obtained agree well with
the experiments.

A nonlinear phenomenological model is used for the twist-
ing segment. The inner layer is isotropic, while the outer layer is
anisotropic due to the aligned chambers. The energy density
function of the twisting soft actuator is then the sum of the two
parts:

Wt ¼ c1W
iso
t þ c2W

aniso
t ; (1)

where c1¼ 0.27 and c2¼ 0.73 are the volume fractions of the isotropic
and anisotropic parts, respectively. Wiso

t and Waniso
t are the energy

density functions of the isotropic and anisotropic parts. For the isotro-
pic inner part, we choose a simple incompressible neo-Hookean
model,33

Wiso
t ¼

l
2
ðI1 � 3Þ; (2)

where l¼ 0.317MPa denoting the shear modulus and I1 ¼ trðFFTÞ.
F is the deformation gradient.

For the orthotropic outer layer, the following energy density
function is used:42

FIG. 2. The theoretical models of the multi-segment soft manipulators. The global and local coordinate systems of the initial shape are shown in (a). The local coordinate sys-
tem changes with the soft manipulator’s deformation. (b) Shows the theoretical model of the twisting segment. The initial and deformed twisting segments are shown in (i) and
(ii). The (iii) cross-section is simplified to (iv), consisting of an isotropic inner layer and an anisotropic outer layer.
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Waniso
t ¼ ð

ffiffiffiffi
I4
p
� 1Þ2Et
2

; (3)

where I4 ¼ FA � FA is a pseudo-invariant to characterize the anisot-
ropy generated by the aligned chambers. A ¼ ðcos h; sin h; 0Þ is the
direction of the chambers in the undeformed configuration. Et repre-
sents the effective modulus of the chamber area, as hollow areas exist.
The elastic energy density function of the twisting segment is then

Wt ¼ c1W
iso
t þ c2W

aniso
t

¼ c1
l
2
ðI1 � 3Þ þ c2

ð
ffiffiffiffi
I4
p
� 1Þ2Et
2

: (4)

2. Modeling extension, expansion, and twist

When the twisting segment is inflated, a pressure P is applied on
its inner surface and the outer surface is assumed to be traction-free. It
exhibits an extension in the length direction and expansion in the
radial direction, besides the twisting deformation. We denote the
stretch in length direction and radial directions as kw and kz, respec-
tively. The twisting per unit length is s. The reference and deformed
cylindrical coordinates are denoted as ðR;W;ZÞ and ðr;w; zÞ, respec-
tively. The twisting per unit length is s. Thus, the deformation in the
current configuration is

r ¼ kwR; w ¼ Wþ skzZ; z ¼ kzZ: (5)

According to the incompressible constraint,

pðr2o � r2i Þl ¼ pk2wðR2
o � R2

i ÞkzL ¼ pðR2
o � R2

i ÞL; (6)

where ri and ro are the inner and outer positions after the deformation.
L and l are the length before and after deformation. The relationship
between kw and kz can be obtained as k2w ¼ 1=kz . The deformation
gradient F now takes the following form:

F ¼

@r
@R

1
R
@r
@W

@r
@Z

r
@w
@R

r
R
@w
@W

r
@w
@Z

@z
@R

1
R
@z
@W

@z
@Z

0
BBBBBBB@

1
CCCCCCCA
¼

R
rkz

0 0

0
r
R

rskz

0 0 kz

0
BBBBB@

1
CCCCCA: (7)

The Cauchy stresses can be obtained as42

r ¼ 2
@Wt

@I1
FFT þ 2

@Wt

@I4
FA� FA� pI; (8)

where I is the identity matrix and p is a Lagrange multiplier to ensure
incompressibility. The Cauchy stress can be written explicitly as

r ¼
rrr 0 0

0 rww rwz

0 rzw rzz

0
B@

1
CA; (9)

where

rrr ¼ �P þ
c1l

k2zk
2
w

; (10)

rww¼�Pþc1ðc2k2zÞlþ
c2E �1þ

ffiffiffiffi
I4
p� �
ðkw coshþckz sinhÞ2ffiffiffiffi

I4
p ; (11)

rzz ¼ �P þ c1k
2
zlþ

c2E �1þ
ffiffiffiffi
I4
p� �

k2z sin
2hffiffiffiffi

I4
p ; (12)

rwz¼rzw¼kz c1ckzlþ
c2E �1þ

ffiffiffiffi
I4
p� �

sinhðkwcoshþckz sinhÞffiffiffiffi
I4
p

 !
;

(13)

and c ¼ sr. Substituting the stresses into the following three Cauchy
equilibrium equations in r, w, and z directions,42

@rrr

@r
þ 1

r
@rrw

@w
þ @rrz

@z
þ 1

r
ðrrr � rwwÞ ¼ 0; (14)

@rrw

@r
þ 1

r
@rww

@w
þ @rwz

@z
þ 2

r
rrw ¼ 0; (15)

@rrz

@r
þ 1

r
@rwz

@w
þ @rzz

@z
þ 1

r
rrz ¼ 0; (16)

we can obtain one non-vanishing equation,

drrr

dr
¼ rww � rrr

r
: (17)

The following three boundary conditions are used. (BC1) The
stress difference between the outer and inner surface is P, i.e.,

P ¼ rrrðr ¼ roÞ � rrrðr ¼ riÞ; (18)

where rrrðr ¼ roÞ ¼ 0 and rrrðr ¼ riÞ ¼ �P. rrrðr ¼ riÞ is negative
as the positive direction of normal stress points away from the surface.

Substituting Eq. (17) into Eq. (18) yields

P ¼
ðro
ri

rww � rrr

r
dr: (19)

(BC2) The axial load is N:

N ¼ 2p
ðro
ri

rzz � rdr ¼ Ppr2i : (20)

(BC3) The axial moment M¼ 0 as the twisting segment is sym-
metric about the length axis,

M ¼ 2p
ðro
ri

rwz � r2dr ¼ 0: (21)

By substituting Eqs. (9)–(13) into the three boundary conditions
Eqs. (19)–(21), the three parameters s, kz, and p can be solved numeri-
cally using function “fsolve” in Matlab. The deformed length of the
tube is obtained as l ¼ kzL. The twisting per unit length is s. The
expansion in the radial direction is r ¼ kwR ¼

ffiffiffiffiffiffiffiffiffi
1=kz

p
R.

B. Reconstruction of the 3D shapes

The deformed 3D shape of the multi-segment soft manipulator is
reconstructed based on the twisting related parameter s and kz, and
the bending-related parameters. Though two different models are used
for the twisting and helical/bending segments due to the differences in
geometry and deformation patterns, both models are physical-based.
The inputs are geometric, material, and loading parameters, while the
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outputs are the corresponding deformed shapes, including the center-
line and 3D shapes. Therefore, the deformed shapes of both the twist-
ing and helical/bending segments can be joined together using the
theoretical method by ensuring continuity at their interfaces.

We first construct the centerline in the global coordinates. The
3D volume structure is then built by projecting the centerline in the
width and thickness. The coordinate vector of the centerline PðiÞðsÞ for
ith segment can be written as

PðiÞðsÞ ¼ P1
ðiÞðsÞX1 þ P2

ðiÞðsÞX2 þ PðiÞ3 ðsÞX3; (22)

where PðiÞ1 ðsÞ; P
ðiÞ
2 ðsÞ; P

ðiÞ
3 ðsÞ are the coordinates in X1; X2; X3 axes,

respectively.
In the following, the deformed shapes of the twisting segments

are derived. The reconstruction of the deformed shapes of the helical
segments is given in Sec. I of the SI. The rotation matrices of each seg-
ment are obtained, and the final deformation of the multi-segment
soft manipulator is then reconstructed.

1. Reconstruction of the twisting segment

For a twisting segment, the segment is uniformly extended to
length l ¼ kzL and the x3 plane is rotated by angle per unit length s.
Thus, x3 remains the same, while x1 and x2 rotate by an angle per unit
length s in the x1-x2 plane. The rotation matrix R is

R ¼
1 0 0
0 cos s sin s
0 �sin s cos s

0
@

1
A: (23)

2. Reconstruction of the multi-segment soft
manipulators

The centerline of a multi-segment soft manipulator can be
described by each segment joint together, with the length, width, and
height directions change continuously at the interface. Therefore, each
segment except the first one needs to be transformed by a rotation
matrix. We denote the transformation matrix between the beginning
and end orientations of ith segment as RðiÞ. The final coordinates of
ith segment are then

for i ¼ 1; Pð1ÞfinalðsÞ ¼ Pð1ÞðsÞ; (24)

for i ¼ 2; Pð2ÞfinalðsÞ ¼ Rð1ÞPð2ÞðsÞ þ Pð1Þfinalðl
ð1ÞÞ; (25)

for i ¼ n; PðnÞfinalðsÞ ¼
Yn�1
i¼1

RðiÞPðnÞðsÞ þ Pðn�1Þfinal ðl
ðn�1ÞÞ: (26)

Using the above rule, the centerline of the 3D shapes of the
multi-segment soft manipulator is reconstructed. By mapping the
points on the centerline along the width and length direction, the final
deformed shape can be built. We use ParaView to plot the 3D shape of
the multi-segment soft manipulator. Details can be found in Sec. V of
the SI.

III. VALIDATION OF THE THEORETICAL MODEL

Experiments and FE simulations for twisting actuators are con-
ducted and used to validate the theoretical predictions in this section.
The fabrication and FE procedures are given in the Secs. VII and VI of
the SI. The model is implemented in a MATHEMATICA code. The

FIG. 3. Validation of the theoretical model of twisting segment. (a) The experimental initial and deformed shapes of three twisting actuators under P¼ 50 kPa with
h ¼ 75�; 60�; 45�. The (b) theoretical predicted and (c) FE simulated deformed shapes are shown. (d) The comparison between the theoretical predicted (solid curves) and
experimentally measured (markers) s and kz as a function of P for the three twisting actuators. (e) The theoretical predicted 3D plot of s as a function of P and h. (f) The
dependence of s on h when P¼ 50 kPa. s reaches its maximum when h ¼� 53�.
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code is run on a desktop with an AMDRyzen 5 3600 central process-
ing unit (CPU) at 3.60GHz processor with 16GB RAM. The computa-
tion time is generally less than ten seconds.

Twisting soft actuators with h ¼ 75�; 60�, and 45� are fabricated.
Their initial and deformed experimental shapes are presented in Fig.
3(a). The applied pressure P¼ 30 kPa. It can be seen that soft actuators
elongate and twist simultaneously. The corresponding theoretical and
FE simulated deformed shapes are shown in Figs. 3(b) and 3(c) for
comparison (SI Video 1). Et is set as 0.008MPa by fitting the theoreti-
cal model with the experimental s and kz for all the three twisting seg-
ments with h ¼ 45�; 60�, and 90�, as shown in Fig. 3(d). We found
that the theoretical model can accurately capture all the three twisting
segment’s behaviors by using this parameter. The physical meaning of
Et is the effective modulus of the orthotropic layer. Once Et is deter-
mined, it will not change for twisting soft actuators with different h.

Next, both the twisting per unit length s and axial elongation kz
of the experimental and theoretical predicted deformed shapes are
compared quantitatively. The theoretical predicted s and kz are plotted
continuously as a function of P in Fig. 3(d), while the experimentally
measured values are shown as discrete points for each twisting soft
actuators. Both the s and kz increase with P. When P is small, the
increase in s and kz can be regarded as linear. However, as P increase
further, s and kz depends nonlinearly on P. The slope of s decreases
with P, while the slope of kz increases with P. The experimental and
theoretical results agree well when h ¼ 75� and 60�, but there is some
discrepancy when h ¼ 45�, possibly due to the contact between adja-
cent chambers.

To further explore the dependence of the twisting on P and h, the
theoretical s is 3D plotted in Fig. 3(e). It can be seen that (1) s
increases with P; (2) for any particular P, s reaches its maximum at a
mediate h. The maximum s at each P is shown by the red curve in Fig.
3(e). For example, the variation of s with h when P¼ 50 kPa is shown
in Fig. 3(f). s reaches its maximum value 0.033 rad/mm when
h ¼ 53�.

IV. NUMERICAL RESULTS

In this section, various multi-segment soft manipulators are
designed using the validated theory. The effects of geometric parame-
ters (segment numbers, segment combinations) and material parame-
ters (Young’s moduli) are investigated. Based on the theoretical model
and the numerical results, an inverse design method is proposed.
Multi-segment soft manipulators that mimic the octopus tentacle with
combined twisting, bending, and helical motion are designed.

A. Effects of segment numbers

Four helical soft manipulators are designed with the same total
length L¼ 240mm as shown in Fig. 4(a). Soft manipulator (i) has one
single helical segment with h ¼ 75�. Soft manipulator (ii) is a two-
segment soft manipulator with hð1Þ ¼ 90�; hð2Þ ¼ 75�; Lð1Þ ¼ Lð2Þ

¼ L=2. In the three-segment soft manipulator (iii), hð1Þ ¼ 75�; hð2Þ

¼ 60�; hð3Þ ¼ 90�; Lð1Þ ¼ Lð2Þ ¼ Lð3Þ ¼ L=3. In soft manipulator
(iv), hð1Þ ¼ 75�; hð2Þ ¼ 60�; hð3Þ ¼ 45�; hð4Þ ¼ 90�; Lð1Þ ¼ Lð2Þ

¼ Lð3Þ ¼ Lð4Þ ¼ L=4.
The deformed shapes of the four soft manipulators under differ-

ent P¼ 10–50 kPa are shown in Fig. 4(b). By varying the number of
segments, various shapes can be formed. Unlike the helical deforma-
tion with constant curvature formed by soft manipulator (i), shapes

with variable curvatures can be constructed using multiple segments.
Thus, the use of multiple segments significantly increases the work-
space of soft manipulators.

B. Effects of segment combinations

Three two-segment helical soft manipulators are designed in Fig.
5 with the following parameters: 90� þ 75�; 90� þ 60�, and 45� þ 75�,
where the former number represents hð1Þ and the latter one represents
hð2Þ. Each segment has the same length 90mm. Other geometrical
parameters are the same as those used in the experiments. The
deformed shapes at P¼ 10–50 kPa are presented. By adjusting the ori-
entation angles in each segment, the two-segment soft manipulators’
trajectory can be programmed, which can be exploited in areas, such

FIG. 4. Design of multi-segment soft manipulators by varying the segment num-
bers. (a) Four different designs of multi-segment soft manipulators. The soft manip-
ulators have 1, 2, 3, and 4 segments, respectively. (b) The deformed shapes of the
four soft manipulators under P¼ 10–50 kPa. Shapes with variable curvatures can
be realized.
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as grasping objects with different geometry and exploring unstructured
environments.

C. Effect of Young’s modulus

As the theoretical model establishes the relationship between
the input loading and the deformed shapes via the material’s con-
stitutive equation, it can be applied to study the effect of the mate-
rial properties on the motion of the multi-segment soft
manipulators.

In Figs. 6(a) and 6(b), two three-segment helical soft manipula-
tors are designed with (a) hð1Þ ¼ 60�; hð2Þ ¼ 90�; hð3Þ ¼ 60�;
Lð1Þ ¼ Lð3Þ ¼ 0:04m, Lð2Þ ¼ 0:07m and (b) hð1Þ ¼ 45�; hð2Þ ¼ 90�;
hð3Þ ¼ 75�; Lð1Þ ¼ Lð2Þ ¼ 0:06m, Lð3Þ ¼ 0:04m. The deformed
shapes of the two three-segment soft manipulators with different
Young’s modulus E ¼ 0:8; 0:7; 0:6; 0:5, and 0.4MPa are shown. The
applied pressure is fixed as P¼ 50 kPa. It can be seen that the deforma-
tion increases with the decrease in E at a fixed pressure.

In Fig. 6(c), the effects of different combinations of material
properties are shown. The geometric parameters of the soft manipula-
tors are the same with hð1Þ ¼ 45�; hð2Þ ¼ 90�; hð3Þ ¼ 45�; Lð1Þ

¼ Lð3Þ ¼ 0:04 m, Lð2Þ ¼ 0:06m. The E of each segment has different
values. For soft manipulator (i), (ii), and (iii), Ei ¼ 0:4þ 0:4þ 0:4MPa,
Eii ¼ 0:4þ 0:6þ 0:4MPa, and Eiii ¼ 0:9þ 0:3þ 0:9MPa. The three
values represent the E of first, second and third segments, respec-
tively. It can be seen that by adjusting the material properties in each
segment, the deformation can be tuned. For example, the second seg-
ment of soft manipulator (ii) has relatively larger E. Therefore, its
bending curvature is smaller than that in the segment 2 of soft
manipulator (i).

D. Inverse design

Inspired by the octopus tentacles where a single tentacle can
exhibit a combination of bending and twisting motions, the theoretical
model can be used to inversely design single-input, multi-segment soft
manipulators that follow specific trajectories. Soft manipulators
matching the surfaces of objects can be designed and used to grasp
fragile objects. Grasping fragile objects is difficult. Soft manipulators
are a good choice due to their soft materials. However, to ensure per-
fect contact and reduce the stress concentration, the trajectories of the
soft manipulators should perfectly match the surface of the fragile
objects. The developed theoretical method can be used to design soft
manipulators that follow these particular trajectories.

The procedures for the inverse design are as follows:

FIG. 5. Design of two-segment soft manipulators with different combination of orien-
tation angles. Three two-segment soft manipulators are designed with (a) hð1Þ

¼ 90� and hð2Þ ¼ 75�, (b) hð1Þ ¼ 90� and hð2Þ ¼ 60�, (c) hð1Þ ¼ 45�, and hð2Þ

¼ 75� The deformed shapes of the three soft manipulators under P¼ 10–50 kPa
are shown. By varying the orientation angles, the trajectories can be programmed.

FIG. 6. Effect of Young’s modulus. Two three-segment helical soft manipulators are
designed with (a) hð1Þ ¼ 60�; hð2Þ ¼ 90�; hð3Þ ¼ 60�; Lð1Þ ¼ Lð3Þ ¼ 0:04m;
Lð2Þ ¼ 0:07 m, and (b) hð1Þ ¼ 45�; hð2Þ ¼ 90�; hð3Þ ¼ 75�; Lð1Þ ¼ Lð2Þ

¼ 0:06 m; Lð3Þ ¼ 0:04m. The deformed shapes of the three-segment helical soft
manipulators with different Young’s modulus E¼ 0.8–0.4 MPa is shown.
P¼ 50 kPa. (c) The geometric parameters of the three-segment helical soft manip-
ulators are hð1Þ ¼ 45�; hð2Þ ¼ 90�; hð3Þ ¼ 45�; Lð1Þ ¼ Lð3Þ ¼ 0:04m; Lð2Þ

¼ 0:06 m. Three different combinations of material properties are used: (i)
0:4þ 0:4þ 0:4 MPa, (ii) 0:4þ 0:6þ 0:4 MPa, and (iii) 0:9þ 0:3þ 0:9 MPa.
The deformed shapes of the three soft manipulators under P¼ 50 kPa are shown.
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(1) the objective curve (or points) is categorized into twisting,
bending, or helical segment manually, and their geometric
parameters are extracted by fitting;

(2) by comparing the extracted parameters with a lookup table, we
find a roughly estimated curve as the initial guess for the
optimization;

(3) we use the constrained optimization method in Matlab to find
the optimal design parameters.

Figure 7(a) shows the schematic trajectory of an octopus tentacle.
To mimic this motion, we first discretize the tentacle’s motion into three
types: twisting, bending and 3D helical deformations [Fig. 7(b)]. The cor-
responding deformation-related geometrical parameters are extracted,
including twisting per unit length s and arc length lt for the twisting seg-
ment, bending curvature jb and arc length lb for the bending segment,
and curvature jh, pitch Pt and arc length lh for the helical segment.

Figure 8 illustrates the detailed procedures of extracting the geo-
metric parameters. The twisting angle per unit length c is easily

calculated using c ¼ s=Lt , where s is the total twisting in the twisting
segment [Fig. 8(b)]. For the bending and helical segments, we first
transform the points to the standard orientations along the coordinate
axis using a rotation matrix that represents the rotation matrix
between the tangent vector at the segment end and the coordinate
axis. The transformed points can then be fitted using the standard
form of the bending and helical curves [Figs. 8(c) and 8(d)]. The
points in the bending segment are fitted using the form
ðx � 1=jbÞ2 þ y2 ¼ ð1=jbÞ2. The points in the helical segment are fit-
ted using the form: xðtÞ ¼ a cosðtÞ; yðtÞ ¼ a sinðtÞ and z(t)¼ bt,
where a ¼ 1=jh; b ¼ Pt=2p and t is a parameter. Using the above
procedures, the geometric parameters of the spatial points/curve can
be extracted.

Next, we use the lookup table to find the roughly estimated geo-
metric, material and loading parameters for a prescribed objective
curve [Fig. 8(f)]. The lookup table is established using the theoretical
model proposed in this work. It should be noted that the applied

FIG. 7. Inverse design of bio-inspired multi-segment soft manipulators with trajectory matching. (a) Shows a schematic of a single tentacle that can exhibit a combination of
bending and twisting motions. (b) The motions are decomposed into twisting, bending and helical deformation with prescribed objective variables. By using the theoretical
model, the multi-segment soft manipulator can be inversely designed. The geometric and material parameters are obtained in (c). The theoretical trajectories of the designed
soft manipulators under P¼ 10–50 kPa are shown in (d). The objective trajectory and experimental trajectory under P¼ 50 kPa are also shown. The theoretical deformed
shapes of the soft manipulators under 10–50 kPa are shown in (e). The soft manipulator is fabricated using the obtained geometric and material parameters. Its deformation
under P¼ 50 kPa is shown in (f). Another example of the inverse design is shown in (g), (h), and (i). The MSE (mean squared error) in (d) and (g) are 3:86� 10�4m2 and
1:83� 10�3m2, respectively.
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FIG. 8. The procedures for identifying the geometric parameters for a target 3D curve. (a) A target 3D curve is split into several segments which display twisting, bending or
helical deformation separately. The red, green, and blue arrows represent twisting, bending, and helical segments, respectively. (b), (c), and (d) The geometric parameters
related to the twisting, bending, and helical segments are identified. Another example showing the optimization procedures. (e) Shows the objective curve. (f) Shows the
roughly fitted curves using the lookup table method. Ddi is the minimum distance of point i to the designed curve. (g) Shows the optimized curves with gravity considered. (h)
Shows the optimized curves without gravity.
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pressure is the same for all segments, as the chambers in each segment
are connected.

We then use the constrained optimization method in Matlab to
find the optimal design parameters, using the roughly estimated

parameters as the initial guess. At each cycle, the deformed shape with-
out gravity is calculated using the theoretical model first [Fig. 8(h)].
Next, the effect of gravity is considered to estimate the deformation of
the soft manipulator [Fig. 8(g)]. Details are shown in Sec. IV in SI. The

FIG. 9. Inverse design methods and workspace of soft manipulators with deformed shapes matching the surface of fragile objects. Grasping a concave vase and convex pear
is demonstrated. (a) and (d) A conformal curve that wrapping the vase or the pear is obtained as the desired curves. (b) and (e) The optimized curves are calculated using the
automated design tool. (c) and (f) The theoretical predicted deformed shapes on the vase. The MSEs in (b) and (e) are 2:15� 10�4m2 and 1:91� 10�4m2, respectively. (g)
The j and Pt distribution of the helical/bending segment. The orientation angles are from 45� to 135�, and the range of P is chosen from 0 kPa to 60 kPa. (h) The demon-
strated workspace of the two-segment soft manipulator. At each P, 14 curves with h¼ 45�–135� are plotted. The curves under different pressures are denoted by different
colors. Red: 10 kPa and 20 kPa. Green: 30 kPa and 40 kPa. Blue: 50 kPa and 60 kPa.
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objective function is defined as the summation of the distance square
between the objective points to the theoretically calculated curve,

f ¼
XN
i¼1
ðDdiÞ2; (27)

whereN is the number of the objective points andDdi is the minimum
distance of point i to the theoretically calculated curve. The “fmincon”
function in Matlab is used. ParametersH2, H3, and P are varied to find
the optimal parameters. The constrained ranges used in Fig. 8 are
0:6Pe < P < 1:4Pe; 1mm <H2 < 3mm and 4mm <H3 < 6mm,
where Pe is the roughly estimated applied pressure. If the minimum f
is found at the range’s boundary, we then vary more parameters or
expand the ranges until a local minimum f is found inside the
boundaries.

Experiments are also conducted to validate the inverse design
method, as shown by Fig. 7(d) and Fig. 7(i). In this case, the prescribed
objective variables are set as s ¼ 0:01p rad/mm, lt ¼ 0:05 m,
j¼ 18m�1, lb ¼ 0:03m, j¼ 70m�1 Pt ¼ 0:09m, and lh ¼ 0:1m.
The trajectories of the centerlines of the designed multi-segment
soft manipulator under various pressure P¼ 10–50 kPa are shown in
Fig. 7(d). The objective trajectory is shown by the blue curve for com-
parison. The theoretical predicted 3D shapes of the designed soft
manipulator under P¼ 10–50 kPa are shown in Fig. 7(e). The
designed soft manipulators are fabricated using the exact calculated
geometric parameters and materials. Its deformed shape is shown
in Fig. 7(f) (SI Video 3). The experimental trajectory is also shown in
Fig. 7(d). The mean squared error (MSE) between the objective and
experimental centerlines is 3:86� 10�4 m2.

Use the same design method, we design another multi-segment
soft manipulator (SI Video 3). The objective curve is shown in Fig.
7(g). To obtain the same trajectory, a three-segment soft manipulator
is designed. The first segment is a twisting segment with h ¼ 60�, and
the orientation angles of the second and third segment are �45� and
60�, respectively. The theoretical predicted shapes at different
P¼ 10–50 kPa are shown in Fig. 7(h). The experiment shape of the
fabricated soft manipulator under P¼ 50 kPa is shown in Fig. 7(i).

The geometric parameters, such as the orientation angles and
inner chamber geometries, are obtained as shown in Table II in
Sec. III of the SI. In the calculation, the input pressure is set as
P¼ 50 kPa. We use the same material for all the segments in the
inverse design to facilitate the sequencing fabrication. Gravity is
considered.

Two examples of soft manipulators matching object surfaces are
shown in Fig. 9. One is a vase, and the other one is a pear. The vase
has a concave surface, while the pear has a convex surface. First, an
objective curve is constructed, which matches the vase or the pear sur-
face, as shown in Figs. 9(a) and 9(d). Next, the optimized curves are
calculated using the inverse design method, as shown in Figs. 9(b) and
9(e). The deformed 3D shapes are plotted on the fragile objects Figs.
9(c) and 9(f). Gravity is neglected to reduce the computational cost,
and the chambers are not shown in the figure. The detailed geometric
and loading parameters are shown below. For the vase curve, three
segments of orientation angles hð1Þ ¼ 70�, hð2Þ ¼ 55�, and hð3Þ ¼ 70�

are used, and the final pressure P¼ 36.4 kPa. Two segments with
hð1Þ ¼ 70�, hð2Þ ¼ 55� are used to fit the pear surface and the pressure
P¼ 42.6 kPa. The other geometric parameters used are h1¼ 3.5mm,

h2¼ 2.0mm, h3¼ 7.0mm, h4¼ 2.0mm, h5¼ 4.0mm, t1¼ 1.0mm,
t2¼ 1.0mm, and t3¼ 1.0mm. The material parameters are
E¼ 0.619MPa and �¼ 0.49.

It should be noted that the model cannot recreate any arbitrary
curve due to the geometric, material and loading restrictions. For
example, for ease of fabrication, the thickness of the silicone layer is
generally between 1.0 and 2.0mm. The elastic modulus of the silicone
rubber is in the range of 0.1–1MPa by varying the combinations of
the base and curing agents. The loading pressure should be smaller
than 60 kPa to avoid leaking. These restrictions on the parameters will
limit the performance ranges of the designed curves.

To obtain the workspace of the multi-segment soft manipulators,
the workspace for the twisting and helical/bending segments are esti-
mated separately first. To ease the calculation, we focus only on the
variation of the orientation angle h and pressure P. The range of other
parameters is relatively small. For a twisting segment, the twising s as
a function of h and pressure P are plotted in Fig. 3(e). Under a particu-
lar P, the range of s for all kinds of h can be obtained. For example, at
P¼ 10 kPa, the range of s is 0–0.0063 rad/mm. At P¼ 50 kPa, s varies
from 0 rad/mm to 0.0325 rad/mm.

Next, the workspace of the helical/bending segment is estimated.
Similar to the twisting segment, we only vary h and P for the helical/
bending segment. Figure 9(g) plots the j and Pt distribution of the
helical/bending segment. The orientation angles are from 45� to 90�

with 5� interval, and P varies from 0kPa to 60 kPa. It can be seen that
not all j and Pt combinations can be realized. The dotted curves repre-
sent the covered range.

To quantitatively estimate the workspace of the multi-segment
soft manipulator, we take a two-segment soft manipulator as an exam-
ple. The first segment is denoted as a twisting segment, while the sec-
ond segment is a helical/bending segment. Figure 9(h) plots the
workspace of the designed soft manipulators. P is the same for both
segments as the chambers are connected and varies from 0kPa to
60 kPa. 14 curves are plotted at each P to show the corresponding
workspace and are labeled by different colors. h varies from 0� to 90�

for the twisting segments, and varies from 45� to 135� for the helical/
bending segments. The other geometric parameters used are
h1¼ 3.5mm, h2¼ 2.0mm, h3¼ 7.0mm, h4¼ 2.0mm, h5¼ 4.0mm,
t1¼ 1.0mm, t2¼ 1.0mm, and t3¼ 1.0mm. The material parameters
are E¼ 0.619MPa and �¼ 0.49. The workspace for soft manipulators
with the different segment or segment combinations can be obtained
using similar procedures.

V. CONCLUSION

This work presents a multi-segment soft manipulator that can
match a specific trajectory in 3D space under a single input pressure.
The soft manipulator consists of multiple segments, and each segment
demonstrates twisting, bending, or 3D helical deformation resulting
from its geometrical design. To inverse design the spatial trajectories, a
theoretical framework is proposed. The theoretical framework estab-
lishes the relationship between the input pressure and the final trajec-
tories via the material’s constitutive equation. An orthotropic
nonlinear energy density function is used to describe the twisting seg-
ment. By solving the Cauchy equilibrium equations in a cylindrical
coordinate, the twisting, expansion, and elongation of the twisting seg-
ment under input pressure are obtained. As the loading direction
varies when the helical segment deforms in 3D space, a minimum
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potential energy method is employed to model the helical segment. By
using a 3D rod theory, the trajectory of the multi-segment soft manipu-
lator is established. A method is then developed to visualize the 3D
deformed shapes of the multi-segment soft manipulators. Experiments
and FE simulation are conducted to validate the theoretical model. The
computational cost of the theoretical model is significantly lower than
that using the FE method. By virtue of the low computational cost of
the theoretical model, the effects of geometric and material properties
and segment combinations are studied. Various inverse designs of the
multi-segment soft manipulators’ trajectories are presented.

Future works are needed to achieve truly versatile applications of
the designed soft manipulators. Using the developed design tool,
future work can generalize the developed strategies to systems with
multiple actuators, which may find real world applications in seafood
animals collections, vegetables and fruits harvesting, soft prosthesis,
etc. Developing a dynamic model for the soft manipulator is also nec-
essary. Modeling contact and the design of multiple actuators with
hyper-redundancy are also existing challenges. Moreover, the current
inverse design process is not entirely automatic, as the first stage is a
human picking the regions of a curve and assigning it to either twist-
ing, bending, or helical deformation. The prospect of implementing an
automated system to do this step using machine learning or cost func-
tion methods is discussed in Sec. II in SI.

The major contributions and findings can be summarized as
follows. First, we propose the design of a pneu-net twisting segment
and develop a nonlinear model to describe its actuation.
Theoretical predictions show that the twisting is maximized when
h ¼� 53�.

Second, we extend the theoretical model based on the minimum
potential energy for a single helical segment to multiple helical seg-
ment. Compared to the previous soft manipulators with a single orien-
tation angle, the workspace is significantly expanded by varying the
number and the orientation angle of each segment.

Third, a 3D rod theory is employed to reconstruct the shape of
the soft manipulator, which accounts for the coordinate transforma-
tion and manipulator’s elongation.

Fourth, the constitutive model relates the input parameters,
including the material, geometric, and loading parameters, directly to
the final deformation. Thus, it can be used to program the shape
change under actuation by adjusting the input parameters. Numerical
results show that the deformed shape can be programmed by tuning
the segment number, orientation angles, material stiffness in each seg-
ment, etc.

Finally, an inverse design method is proposed to design the soft
manipulators’ spatial trajectories. Multi-segment soft manipulators
that mimic the twisting, bending, and 3D helical deformations of the
octopus tentacles are designed. Soft manipulators matching the surface
of fragile objects are designed. The proposed design method has
immense potential to design soft manipulators for particular tasks in
3D space and to broaden their applications.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information that
supports the findings of this study, including the theoretical model
of the multiple helical segments, optimization procedures, visuali-
zation procedures, finite element methods, experimental details,
and videos.
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