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Although significant advances in the design of soft robotic hands have been made to mimic the structure of the human hands,
there are great challenges to control them for coordinated and human-like postures. Based on the principle of postural synergies
in the human hand, we present a synergistic approach for coordinated control of a soft robotic hand to replicate the human-like
grasp postures. To this end, we firstly develop a kinematic model to describe the control variables and the various postures of the
soft robotic hand. Based on the postural synergies, we use the developed model and Principal Component Analysis (PCA)
method to describe the various postures of the soft robotic hand in a low-dimensional space formed by the synergies of actuator
motions. Therefore, the coordinates of these synergies can be used as low-dimensional control inputs for the soft robotic hand
with a higher-dimensional postural space. Finally, we establish an experimental platform on a customized soft robotic hand with
6 pneumatical actuators to verify the effectiveness of the development. Experimental results demonstrate that with only a 2-
dimensional control input, the soft robotic hand can reliably replicate 30 grasp postures in the Feix taxonomy of the human hand.
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1 Introduction

Human hands have many degrees of freedom (DoFs), which
offers much dexterity to perform skilful grasps. When a
human hand grasps objects, all finger joints are closely co-
ordinated, which poses a challenge for the design of a robotic
hand to replicate human-like grasp postures [1]. A traditional
approach to address this challenge is to implement poly-
articular structures and multiple actuators in robotic hands
[2–5]. However, such designs are generally complex and
require sophisticated control strategies, which limit their
applications.
In general, during grasping, a human hand usually con-

forms to the shape of objects without very sophisticated

control. The characteristic is partly attributed to the under-
actuated mechanisms in the hand anatomy, which has in-
spired effectual underactuated designs for robotic hands
[6,7]. However, these designs are usually complicated be-
cause the components are primarily rigid and discretely de-
ployed. Recently, soft robotics technology has provided a
promising alternative for the underactuated design of robotic
hands. Different from rigid components (e.g., joints and
links) with compliant structures, soft robotic hands are in-
herent underactuated due to the compliant feature of the used
soft materials. This feature makes the grasping actuation of
soft robotic hands result from simple deformations of the
structure (e.g., fibre-reinforced chambers [8–10], flexible
bellows [11–14] and pouches [15]), which essentially differs
from that of the rigid robotic hands. Significant work in-
cludes anthropomorphic hands (e.g., RBO Hand II [8], Op-
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toelectronically Innervated Soft Hand [9] and BCL-26 Hand
[10]) and grippers (e.g., Biological Sampling Gripper [16]
and Jamming-based Gripper [17]).
Although significant advances have been made in building

soft robotic hands that mimic the structure of the human
hand, efforts to control these hands to achieve coordinated,
human-like postures are limited. In most anthropomorphic
soft hands, multiple actuators are independently controlled
[8–10]. As a result, many control signals need to generate to
coordinate these actuators for desired postures, which is not
available in many cases with limited channels (e.g., user-
driven robotic grasping [18]). It has been a great challenge to
design an effective coordinated control strategy that can al-
low the soft robotic hand to replicate a wide range of human-
like postures while minimizing control inputs.
A potential approach to develop coordinated control stra-

tegies is to imitate the control of the human hands. Neu-
roscience studies indicate that the human hands’ versatile
postures are generally controlled within a low-dimensional
space, termed as postural synergies [19]. Inspired from this
concept, a large amount of interesting work on synergistic
control of rigid robotic hands has been reported [4,20–26],
which can be broadly divided into two categories. The first
category is to design algorithms extracting motion synergies
from the data of the human hand or the robotic hand to
control a multi-DoF robotic hand without changing its me-
chanical structures (e.g., the number of actuators). Sig-
nificant examples of algorithm-based implementation
include the synergistic control of the 20-DoF DEXMART
Hand [4] and the 12-DoF DLR Hand II [20]. The algorithm-

based implementation can also be integrated with dexterous
prosthetic hands [21] for amputees with limited control
channels. The second category is to mechanically implement
synergies into robotic hands to reduce the number of con-
trolled actuators and the hardware complexity, as pioneered
by Brown and Asada [23], Xu et al. [24], Xiong et al. [25].
Whether it is an algorithmic or mechanical based im-
plementation, synergistic control has shown great potential
in generating more human-like motions for rigid robotic
hands with a low number of control inputs.
However, developing synergistic control approaches for

soft robotic hands remians elusive. First, the actuation me-
chanisms and mechanical structures of soft robotic hands
differ from those of their rigid analogues, resulting in the
difference of kinematic modelling for synergistic control. As
shown in Figure 1, rigid robotic hands typically have trans-
mission mechanisms (e.g., tendons, linkages, and gears) to
transmit the motion/force of motors into the linkage-based
joints. Soft robotic hands usually have soft actuators em-
bedded in the hand structure to transmit the power of stimuli
(air pressures in most cases) into the motion/force of actua-
tors themselves, which can be regarded as an integration of
transmission mechanisms and end-effectors. Second, soft
actuators typically have nonlinear motion-stimuli relation-
ships, which introduces extra calibration and calculation
complexity to relate the hand joint angles to the stimuli of
actuators [8]. Third, due to the absent synergies that belong
to the higher-dimensional space, rigid robotic hands con-
trolled by low-dimensional synergies may have excessive
joint angle errors for some postures [4]. It is unclear whether

Figure 1 (Color online) Comparison of rigid robotic hands and soft robotic hands on actuation mechanisms and mechanical structures.
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the inherent compliance of a soft robotic hand helps com-
pensate for these errors. At last, although there are several
“soft” robotic hands designed and controlled with the ap-
proach of “soft synergies” or the “adaptive synergies” [26],
these approaches are developed based on robotic hands
composed of rigid phalanges and tendon-driven mechanisms
but with compliant joints or skins (e.g., the Pisa/IIT hands
[26]). This is different from the “soft robotic hands” (mainly
built with soft materials) in this paper.
To address these challenges, we develop a synergistic

control approach derived from postural synergies in the hu-
man hand, enabling dexterous soft robotic hands to replicate
various human-like grasp postures. We first develop a ki-
nematic model based on the actuation mechanisms and me-
chanical structures of a soft robotic hand with 6 actuators to
describe the relationship between its motion outputs (i.e.,
postures) and actuation inputs (i.e., pressures). To obtain the
required postures, we use a joint-to-joint mapping to transfer
measured posture data of the human hand to a high-dimen-
sional posture space of the soft robotic hand. We further
leverage a PCA method to approximatively describe the
high-dimensional posture space with a low-dimensional sy-
nergy space. In this sense, low-dimensional coordinates of
the synergy space are used to control the soft robotic hand to
achieve high-dimensional grasp postures. Finally, an ex-
perimental platform is established for the nonlinear char-
acterization of motion-stimuli relationships of actuators and
the effectiveness validation of the developed synergistic
control approach. Experimental results demonstrate that with
a 2-dimensional control input (i.e., synergy coordinates), the
soft robotic hand can replicate 30 postures in the Feix tax-
onomy of the human hand grasps and the hand’s inherent
compliance helps compensate for the errors caused by absent
synergies.

The remainder of this paper is organized as follows. Sect. 2
presents the modelling of the synergistic control approach,
including a brief introduction of a pneumatic, soft robotic
hand, its kinematics, and a dimensionality reduction method
based on synergies to simplify the robotic hand’s task space.
Sect. 3 illustrates the generation of synergy coordinates
based on measured data of human hand postures. Sect. 4
demonstrates the experimental characterization and valida-
tions of the synergistic control approach, and the conclusions
are drawn in Sect. 5.

2 Modelling of the synergistic control approach

Our goal is to control the soft robotic hand to replicate hu-
man-like grasp postures synergistically. In this section, we
first give a brief introduction of a soft robotic hand with 6
pneumatic actuators and underactuated mechanisms. As
shown in Figure 2, we build a kinematic model of the soft
robotic hand to describe the relationships of its postures (i.e.,
the joint angle space) and actuation signals. Because the
required postures of the soft robotic hand (i.e., the high-
dimensional, desired task space) are derived from the data of
human hand postures, we use a joint-to-joint mapping
scheme between the two hands. We further employ a PCA
method to extract synergies of the desired task space to
generate a low-dimensional, designed task space. As a result,
the corresponding synergy coordinates are used as control
inputs for the soft robotic hand to achieve high-dimensional
grasp postures.

2.1 Description of the soft robotic hand

The soft robotic hand is developed in our prior work [27]

Figure 2 (Color online) Block diagram of the synergistic control approach.
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with an anthropomorphic appearance and size (width:
90 mm, length from the wrist: 190 mm), which is beneficial
to replicating human-like grasp postures. As shown in Figure
3, the soft robotic hand consists of six soft pneumatic ac-
tuators and a rigid palm skeleton. Two types of actuators that
bend in different patterns upon pressurization are used to
build the hand: one is a multi-joint finger actuator, and the
other is a single-joint actuator.
As shown in Figure 3(a), the multi-joint finger actuator has

a multi-layered, fibre-reinforced tubular structure integrating
soft joints and rigid segments. Upon pressurization, the ra-
dial reinforcements (i.e., fibre windings) limit the radial
expansion of the elastomeric, hollow inner tube (made of
silicone rubber Dragonskin 10, Smooth-On Inc., USA). The
strain-limiting layer (i.e., polyethylene mesh) and rigid
segments (i.e., carbon fibre plates) inhibit the extension of
the tube bottom surface to make the inner tube bend, re-
sembling the articular flexion of human fingers. In this sense,
the portions without rigid segments can be regarded as soft
joints. An elastomeric outer wrappage (make of silicone
rubber Ecoflex 0030, Smooth-On Inc., USA) covers the in-
ner tube to provide cosmetic sealing. The actuator is used as
index finger/middle finger/ring finger/little finger (with 3
joints) and thumb (with 2 joints).
As shown in Figure 3(b), the single-joint actuator, termed

thumb-palm connection, is a fibre-reinforced elastomeric
pad to offer thumb circumduction motion. Upon pressur-
ization, the radial reinforcements (i.e., fibre windings) limit
the radial expansion of the elastomeric, hollow pad (made of
silicone rubber Dragonskin 10). An elastomeric outer
wrappage (made of silicone rubber Ecoflex 00-30) covers the
inner pad to provide cosmetic sealing. The strain-limiting
layer (i.e., polyethylene mesh) inhibits the extension of the
pad’s bottom surface to make the pad bend, imitating the
circumduction motion of the human thumb.
As shown in Figure 3(c) and (d), the soft robotic hand has 6

active flexion DoFs and 15 soft joints. We number the carpal-
metacarpal (CMC) joint, metacarpal-phalangeal (MCP)
joint, and interphalangeal (IP) joint of the opposable thumb
as joints 1, 2, and 3, respectively. We number the MCP joint,
proximal interphalangeal (PIP) joint, and distal inter-
phalangeal (DIP) joint of the index finger as joints 4, 5, and
6, respectively. The joint numbering of the middle finger/ring
finger/little finger is similar to that of the index finger.
Furthermore, the inherent compliance of the soft actuators

introduces various passive DoFs to the hand, mimicking the
passive compliance of the human hand. For example, the soft
robotic hand has no active abduction/adduction DoFs be-
tween fingers, but the actuator compliance enables their
passive abduction/adduction. In this sense, the control

Figure 3 (Color online) Schematic of the soft robotic hand. (a) Structure of the multi-joint finger actuator and the single-joint actuator; (b) the rest state and
inflated state of the two kinds of actuators; (c) location of the actuators in the soft robotic hand prototype; (d) location and numbering of the soft joints.
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complexity of the soft robotic hand is reduced, which po-
tentially helps dexterous, adaptive grasping.

2.2 Kinematic model

The flexion angle of a joint in the soft robotic hand is denoted
as s. Thus, a grasp posture of the soft robotic hand can be
described by a vector s s ss = ( )1 2 15

15R , where
s k( = 1, 2, 15)k denotes the k-th joint angle. The flexion of
15 joints results from the bending of 6 actuators. We define
the bending angle of an actuator as q. Thus, s can be deduced
by a vector q q qq = ( )1 2 6

6R , where qi denotes the
i-th actuator bending angle.
As shown in Figure 3(c) and (d), only the CMC joint is

independently actuated (i.e., driven by the thumb-palm
connection) while others are underactuated (i.e., driven by
the multi-joint finger actuators). According to the actuator
and joint numbers listed in Figure 3(c) and (d), we establish a
piecewise mapping between qi and sk:
q s q s s

q s i

= ;  = + ; 

= ( = 3, 4, 5, 6).
(1)

i
k i

i

k

1 1 2 2 3

=3 5

3 3

The postures can be written as a matrix form (S, termed
joint space):

S = (s s s ) , (2)m
m

1 2
T × 15R

where m denotes the total number of grasp postures and
s s ss = ( )j j j j, 1 , 2 , 15

15R denotes joint angles of the
j-th grasp posture. Likewise, the postures can also be de-
scribed by m groups of actuator bending angles (Q, termed
task space):

Q q q q= ( ) , (3)m
m

1 2
T × 6R

where q q qq = ( )j j j j, 1 , 2 , 6 denotes actuator bending
angles of the j-th grasp posture.
Since we aim to using the robotic hand to achieve human-

like grasp postures, it is necessary to map the human hand
postures onto Q. The data of human hand joint angles can be
acquired by a visual capture system as we use in this paper,
or other motion capture devices (e.g., Cybergloves [25]).
According to Feix et al. [28], the human hand has more than
20 DoFs, which is more than that of the soft robotic hand. To
address such a kinematic dissimilarity between the soft ro-
botic hand and the human hand, only the joint angles existing
in both hands are tracked (via direct or indirect ways, see
Sect. 3). Thus, a joint-to-joint mapping [29] is leveraged to
transfer the joint angles of the human hand to those of the
soft robotic hand. By combining eqs. (1)–(3), one can yield
the desired task space of the soft robotic hand.
Finally, we investigate the relationship between the ac-

tuator bending angle and its input pressure. The pressure of

the i-th actuator pi can be written as a function of qi:
p f q= ( ). (4)i i i

The function fi, governed by the actuator design, is typi-
cally nonlinear and obtained by experimental characteriza-
tion in free space [8,10]. Thus, for each actuator, we can use
eq. (4) to calculate the pressures corresponding to different
bending angles.

2.3 Dimensionality reduction with synergies

When m increases, the dimensionality of the desired task
spaceQ becomes quite large, which introduces much control
complexity. A promising method for simplification is to re-
present Q within a lower-dimensional space, mimicking the
postural synergies in the human hand. To this end, we
leverage the Principal Component Analysis (PCA) [30] to
extract lower-dimensional synergies of Q, and use them for
the practical implementation in the soft robotic hand. The
process is described as follows. First, the i-th actuator
bending angles for m grasp postures described in Q are
averaged:

q m q= 1 . (5)i
j

m

j i
=1

,

Thus, Q can be expressed as the sum of two parts:

x x x
x x x

x x x

q q q
q q q

q q q

Q X Q= +

= + , (6)

m m m

1, 1 1, 2 1, 6

2, 1 2, 2 2, 6

, 1 , 2 , 6

1 2 6

1 2 6

1 2 6

where X m × 6R denotes the dataset of actuator bending
angle deviations and Q m × 6R indicates the dataset of
averaged actuator bending angles across m postures. Each
row of Q (i.e., q q q( )1 2 6 ) represents the average
posture of the soft robotic hand acrossm postures. According
to the Singular Value Decomposition (SVD) [31], X can be
expressed as the product of three parts:

X UAV= , (7)T

where U m m×R and VT 6 × 6R are unitary matrixes, and
A m × 6R is a positive semidefinite rectangular diagonal
matrix. Each element on the diagonal of A is denoted as a
singular value c( = 1,  2, , 6 )c . Each column of V is the
principal component [30] of X and can be expressed as
V v v v= ( )1 2 6 . The proportional relationship of six
elements in vector vc denotes the coordinated characteristics
of actuator flexion angle deviations, which can be regarded
as a synergy. Then, the variance of X, namely c

2 , is used to
calculate the contribution rate of the c-th synergy:

= / . (8)c c
C

C
2

=1

6
2
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Furthermore, the cumulative contribution rate of the first c
synergies is calculated as

= / . (9)c
C c

c

C
C

C
=

2

=1

6
2

Because c
2 is listed in descending order by the contribu-

tion rate in SVD [31], we use the first c synergies to generate
a matrix X m × 6R to describe X approximatively:

X X UAV= , (10)T

where U m c×R , A = diag ( )c
c c

1 2
×R , and

V v v v= ( )c
cT

1 2
T × 6R , respectively. We further

define a matrix W m c×R as
W = . (11)
Substituting eqs. (10) and (11) into eq. (6) yields a de-

signed task space Q m × 6R :

Q WV Q
w w w v v v
q q q

= +
= ( ) ( )

+( ) . (12)
c c

T

1 2 1 2
T

1 2 6

The elements in the vector cw ( = 1,  2, , ) are the
coefficients of synergy vξ for different postures. Eq. (12)
indicates that the c-dimensional space formed by c synergies
can describe Q . In other words, the c-dimensional coeffi-
cients can be regarded as inputs to control the soft robotic
hand to achieve human-like postures. Therefore, the coeffi-
cients are termed synergy coordinates. In this way, the di-
mensionality of control inputs can be reduced from 6 to c.
Additionally, eq. (12) can be expanded as

q q q
q q q

q q q

w w w
w w w

w w w

v v v
v v v

v v v

q q q
q q q

q q q

=

× + . (13)

m m m

c

c

m m m c

c

c

c

1, 1 1, 2 1, 6

2, 1 2, 2 2, 6

, 1 , 2 , 6

1, 1 1, 2 1,

2, 1 2, 2 2,

, 1 , 2 ,

1,1 1,2 1,

2,1 2,2 2,

6,1 6,2 6,

T
1 2 6

1 2 6

1 2 6

According to eq. (13), the flexion angle of the i-th actuator
for the j-th posture is obtained:

( )
( )

q w w w

v v v q

=

× + . (14)

j i j j j c

i i c i i

, , 1 , 2 ,

1, 2, ,
T

Substituting eqs. (4) and (14) into Q yields the actuation
space P m × 6R :

f q f q f q
f q f q f q

f q f q f q

P =

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

. (15)

m m m

1 1, 1 2 1, 2 6 1, 6

1 2, 1 2 2, 2 6 2, 6

1 , 1 2 , 2 6 , 6

The elements of P are the actuation signals for designed
postures of the soft robotic hand. Thus, we can use c-di-
mensional synergy coordinates to control the soft robotic
hand to replicate multiple human-like postures, which is
termed the synergistic control approach. In the following
Sects. 3 and 4, we present an example in which m=33 (all 33
typical grasp postures in the Feix taxonomy [28]) to de-
monstrate the effectiveness of the approach with the an-
thropomorphic hand introduced in Sect. 2.

3 Generating synergy coordinates based on
human hand postures

In this section, we first use a motion capture system to ac-
quire the posture data of the human hand, followed by the
calculation of human hand joint angles. Afterwards, we use
the approach illustrated in Sect. 2 to calculate the synergy
coordinates.

3.1 Calculation of the desired task space

We perform experiments on the grasping behaviour of the
human hand to create a reference posture dataset for Q .
Here, we choose the postures in the Feix taxonomy [28] as
the grasping paradigms. The Feix taxonomy is chosen be-
cause it covers the most extensive set of static, stable human
grasp postures (m = 33) among the previous work.
Six healthy subjects (four males and two females) volun-

teers for the grasp experiments. Their hand sizes (average
width: 86 mm, average length from the wrist: 183 mm) are
similar to the soft robotic hand. The subjects are provided
informed consent prior to participating in the experiment.
The experiment procedure is in accordance with the De-
claration of Helsinki. Before the experiments, a subject is
instructed to train for about 30 min, in which the subject tries
particular postures to grasp customized objects following the
Feix taxonomy (see Figure 4(a)).
During the experiments, the posture dataset of the human

hand is acquired using a Prime 13 motion capture system
(OptiTrack Inc., USA). As shown in Figure 4(b), a total of 29
reflective markers are attached to the hand of a volunteer,
including 6 markers on the thumb, 4 markers on the index/
middle/ring/little finger, 6 markers on the back of the hand
and 1 marker located between the thumb and the index fin-
ger. A total of 6 cameras are deployed around the volunteer
so that at least two of them capture the motion of all markers
at a single time instance. The motion capture system has a
resolution of 1.3 MP (1280 × 1024) and a frame rate of 240
FPS. The subject sits naturally, grasping a customized object
delivered by an assistant with the corresponding grasp pos-
ture defined by the Feix taxonomy. Each grasp posture is
held for 10 s and the cameras record the positions of the
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markers. All 33 grasp postures are measured (see Figure 5).
Each posture is sampled 3 times for establishing repeatability
and relevance of trends, and the values are averaged to
generate a dataset.
Based on the dataset, we calculate the joint angles of the

human hand, which can be categorized into three kinds. The
first kind of joint angle is generated by two vectors. Such
kind of joint angle includes the flexion of PIP joints (index
finger, middle finger, ring finger, and little finger), MCP joint
(thumb), and IP joint (thumb). As shown in Figure 6(a), the

joint angle can be deduced by
u u
u u= cos , (16)1 1 2

1 2

where u1=a1−a2, u2=a3−a4 and at (t=1,2,3,…) denotes the
three-dimensional coordinate of each marker. As shown in
Figure 6(b), the second kind of joint angle is generated by a
vector and a plane (i.e., Plane I). Such kind of joint angle
includes the flexion of MCP joints (index finger, middle
finger, ring finger, and little finger). The joint angle can be
deduced by

u n
u n=sin , (17)1 1 1

1 1

where u1=a1−a2, n1 is the normal vector of Plane I (n1=u2×u3,
u2=a3−a4 and u3=a5−a6). As shown in Figure 6(c), the third
kind of joint angle (i.e., the circumduction of the thumb’s
CMC joint) is generated by two planes (i.e., Plane I and
Plane II). The joint angle can be deduced by

n n
n n=cos , (18)1 1 2

1 2

where n1 and n2 are the normal vectors of Plane I and II,
respectively (n1=u1×u2, n2=u3×u4, u1=a1−a2, u2=a3−a4,
u3=a5−a6 and u4=a7−a8).
The flexion of DIP joints (index finger, middle finger, ring

finger, and little finger) are not directly calculated because
the markers on the fingertips are often obscured during
grasping tasks. In this sense, we consider the motion feature
of the human hand that the DIP-PIP joint angle relationship
is approximately linear for a considerable proportion of
grasp postures [32]. According to Fujiki et al. [33] and
Magenes et al. [34], we assume the flexion angle of the DIP
joint is 2/3 times that of the corresponding PIP joint. Notably,
occlusion difficulties can be addressed by Cyberglove-based
motion capturing methods and thus flexion of DIP joints can
be directly calculated, which will be investigated in our fu-
ture work. As discussed in Sect. 2.1, the abduction angles

Figure 4 (Color online) A visual tracking method is used to acquire
human hand postures. (a) Experimental setup; (b) the distribution of re-
flective markers.

Figure 5 (Color online) Still images of the 33 grasp postures of the human hand.

559Zhang N B, et al. Sci China Tech Sci March (2022) Vol.65 No.3



between fingers are not calculated because the soft robotic
hand has no corresponding active DoFs. Combining the
above calculation results and eqs. (1)–(3), we can obtain the
desired task space of the soft robotic hand Q 33 × 6R .

3.2 Calculation of the synergy coordinates

According to eq. (5), we obtain the average posture:
q = 56.7°1 , q = 45.1°2 , q = 131.0°3 , q = 155.2°4 , q = 164.4°5

and q = 171.7°6 . Table 1 lists the vectors of 6 synergies ob-
tained by adopting eqs. (6) and (7). The contribution rates of
6 synergies are 80.1%, 9.8%, 6.0%, 2.3%, 1.0%, and 0.8%,
respectively. The cumulative contribution rates of 6 syner-
gies are 80.1%, 89.9%, 95.9%, 98.2%, 99.2%, and 100%,
respectively. The above results are plotted in Figure 7. The
first 2 synergies (i.e., the highlighted vectors in Figure 7(a))
count for 89.9% cumulative contribution rate while others

only count for 10.1%. Hence, we choose c = 2 and use the
first 2 synergies to generate the designed task space
Q 33 × 6R .
The matrix W 33 × 2R can be calculated by adopting eqs.

(10) and (11). The two columns of the matrixW (i.e., w1 and
w2) denote the 2-dimensional synergy coordinates corre-
sponding to 33 grasp postures in the designed task space.
Note that the synergy coordinates of the average posture are
(0, 0). As shown in Figure 8, we plot the synergy coordinates
of the 33 grasp postures (marked circle) and the average
posture (marked star) in the designed task space formed by
the first 2 synergies. The 33 grasp postures in the designed
task space do not cluster into several discrete groups, which
is essentially consistent with the results in ref. [19].
According to eqs. (12) and (13), we can obtain the actuator

bending angles in the designed task space Q (formed by the
first 2 synergies) and compare them with those in the desired
task space Q (formed by all 6 synergies) as shown in Figure
9. The variation trends of bending angles in both task spaces
are the same for almost all actuators except that for the
thumb, which indicates that the absence of 4 synergies
mostly contributes to the variations of thumb bending angles.
We also find that the values are almost positive (i.e., bend-

Figure 6 (Color online) Schematics of the three kinds of joint angles. (a) The angle between two vectors; (b) the angle between a vector and a plane; (c) the
angle between two planes.

Figure 7 (Color online) The contribution rate and cumulative contribu-
tion rate of 6 synergies.

Table 1 The vectors of 6 synergies

Synergy number Synergy direction

Synergy 1 7.8 × 10 0.08 0.28 0.45 0.57 0.625 T

Synergy 2 [0.08 0.38 0.85 0.06 0.17 0.32]T

Synergy 3 [0.20 0.88 0.33 0.18 0.05 0.21]T

Synergy 4 [ 0.32 0.23 0.29 0.65 0.19 0.54]T

Synergy 5 [0.90 0.13 0.09 0.15 0.24 0.28]T

Synergy 6 [ 0.19 0.07 0.06 0.56 0.74 0]T
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ing) except for two special cases of Palmar pinch and Ven-
tral. For Palmar pinch, the value of the thumb bending angle

is negative in Q (i.e., extension as shown in Figure 5) but the
corresponding value is positive in Q (–10.5° vs. 29.4°). For

Figure 8 (Color online) The distribution of 33 grasp postures and the average posture in the 2-dimensional space formed by the first 2 synergies.

Figure 9 (Color online) Comparison of desired task space (with all 6 synergies) and designed task space (with the first 2 synergies) on actuator bending
angles.
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Ventral, the value of thumb bending angle is positive inQ but
the corresponding value is negative in Q (1.0° vs. –2.3°).
Since the negative value in Q can not achieve via active
control and the value is relatively small, we replace –2.3°
with 0° considering the practical fact.
To further quantize the difference between the two task

spaces, we calculate their relative errors by

e
q q

q= , (19)j i
j i j i

j i,
, ,

,

where the subscript i and j denote the i-th actuator and the j-
th posture, respectively. The mean relative error for the i-th
actuator is calculated by

e
e

= 33 . (20)i
j

j i
=1

33
,

The results are plotted in Figure 10. The minimum and
maximum relative errors occur in the subgraph of thumb,
reaching −380.2% and +1922.2%, respectively. The values
of mean relative errors are all positive (i.e., +7.2%, +116.4%,
+4.1%, +1.1%, +1.8%, and +2.7%), indicating that bending
angles inQ are larger than those in Q on average. The mean
relative error of thumb is particularly large (>100%) com-
pared with those of other actuators (<10%), which can be

attributed to the absence of 4 synergies. Furthermore, we
respectively use 2, 3, 4 and 5 synergies to generate designed
task spaces and compare the relative error distributions for
the thumb. We calculate the minimum (denoted as ej,2,min),
maximum (denoted as ej,2,max), mean (i.e., e2), and range
(denoted as σ=ej,2,max−ej,2,min) of relative errors. As shown in
Figure 11, with increasing number of synergies, the trends of
ej,2,max, e2 and σ are similar, decreasing from 1922.2% to
14.9%, 116.4% to −2.6%, and 2302.4% to 91.3%, respec-
tively, while ej,2,min has no obvious trends. Overall, the results
indicate that it is helpful to decrease the relative error of
thumb bending angles by adding more synergies.

4 Leveraging synergy coordinates to control the
soft robotic hand

In this section, we use the synergy coordinates generated in
Sect. 3 to drive the soft robotic hand to achieve 33 postures.
We first build a pneumatic control platform for the soft ro-
botic hand. Then, we experimentally characterize the bend-
ing angle-pressure relationship of the actuators. Based on the
synergy coordinates and the results of actuator character-
ization, we calculate the required pressures to drive the soft

Figure 10 (Color online) Relative errors of bending angles for different actuators of the two task spaces.
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robotic hand. Finally, we evaluate the experimental results to
demonstrate the effectiveness of the synergistic control ap-
proach.

4.1 Control platform

As shown in Figure 12(a), the control platform includes a
user interface, a dSPACE-DS1103 board, 6 pressure reg-
ulation modules, an air source, and the soft robotic hand. The
user interface is created in Matlab (Version 2018b, USA) for
users to specify 2-dimensional synergy coordinates. Based
on the synergy coordinates, the interface calculates the 6-
dimensional pneumatic actuation signals (i.e., pressures) and
sends them to a dSPACE-DS1103 board via serial port
communication. The dSPACE-DS1103 board leverages di-
gital-to-analogue converters (DAC) to convert the pneumatic

actuation signals to voltage signals to drive 6 pressure reg-
ulation modules. All the 6 pressure regulation modules are
connected to an air source (i.e., the pump, Eidolon, China).
As shown in Figure 12(b), a single pressure regulation
module consists of an electric proportional regulator
(MM1MBHEEN, Proportion-Air, USA) and a pressure
sensor (528, HUBA, Switzerland). The electric proportional
regulator allows for the regulation of outlet pressures pro-
portionally to the voltage signals, which is based on its self-
contained pressure sensors and the bang-bang control strat-
egy [35]. The HUBA pressure sensor is used for checking
whether the electric proportional regulator works normally
and for sending the measured pressures to the dSPACE-
DS1103 board via analogue-to-digital converters (ADCs).
Thus, the 6 pressure regulation modules can individually
control the pressure of 6 soft actuators connected to them.

Figure 11 (Color online) The relationships between relative error distributions of thumb bending angles and different numbers of synergies.

Figure 12 (Color online) A pneumatic control platform for the soft robotic hand. (a) Schematic of the control platform; (b) schematic of a single pressure
regulation module; (c) pictures of the dSPACE-DS1103 control board and pneumatic components.
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The pictures of the platform components are shown in Figure
12(c).

4.2 Motion characterization of the soft actuators

Based on the pneumatic control platform and the motion
capture system, we investigate bending angle-pressure re-
lationships for different soft actuators to obtain the numerical
form of eq. (4) in Sect. 2.2. As shown in Figure 13(a), a total
of three actuators are tested: index finger (as an example),
thumb, and the thumb-palm connection. Index finger and
thumb are mounted on a rigid base to avoid mutual inter-
ference between actuators. The thumb-palm connection is
mounted on the soft robotic hand rather than mounted on a
rigid base with free motion. That’s because the thumb-palm
connection locates between the palm skeleton and the skin,
both constrain the free motion of the thumb-palm connection
(see Figure 13(b)).
Actuator bending angles are recorded based on a visual

tracking process. As shown in Figure 13(a), for the index
finger, two reflective markers are attached to the base
(termed base markers) and another two markers to the tip end

(termed end markers). The base markers generate a reference
position vector (termed RPV). The end markers generate a
bending position vector (termed BPV, marked dot at 0 kPa
and solid at the other pressures). The distributions of makers
for the thumb and the thumb-palm connection are analogous
to that of the index finger. At the initial state (i.e., 0 kPa), the
actuator has an initial angle deviation (IAD) which is in-
troduced by structural constraints, gravity, and fabrication
deviations. IAD is denoted as θi (i=1,2,…,6) and is defined as
the angle between RPV and BPV at 0 kPa. As shown in
Figure 13(b), IADs of the index finger, thumb, and thumb-
palm connection are measured 18°, 13°, and 35°, respec-
tively.
Then, we pressurize the actuators from 0 to 80 kPa in

10 kPa increments and record BPVs at these pressures. The
actuator bending angle q i( = 1, 2, , 6)i at pressure σ
(σ>0) kPa is denoted as the angle generated by the BPV at
0 kPa and the BPV at σ kPa. Note that q 2 is the sum of the
MCP joint and IP joint; q i( = 3, 4, 5, 6)i is the sum of the
MCP joint, PIP joint, and DIP joint. The still images of
actuator bending at different pressures are shown in Figure
13(c). Generally, the actuator bending angle increases with

Figure 13 (Color online) Characterization of the soft actuators. (a) Illustration of IADs; (b) location of the thumb palm connection; (c) actuator motions
upon pressurization; (d) bending angle-pressure relationships.

564 Zhang N B, et al. Sci China Tech Sci March (2022) Vol.65 No.3



the pressure, and the actuator bending angle-pressure re-
lationships are plotted in Figure 13(d). We further describe
bending angle-pressure relationships for different actuators
by polynomial fitting (the solid lines denote the fitting
curves):

p q
p q q
p q q
i

= 2.65146 ,
= 0.00884 + 1.76401 ,
= 0.00128 + 0.6583 ,

( = 3, 4, 5, 6),

(21)
i i i

1 1

2 2 2

where pi denotes pressure of the i-th actuator. The coeffi-
cients of determination (R-Squares) of the three models are
0.993, 0.999, and 0.997, which indicates that the models well
explain the variations of measured values. The error bars are
along the horizontal axis. To eliminate angle mismatches
between the human fingers and the soft fingers, the actuator
bending angle qi in the task space can be calculated by
q q= + . (22)i i i

Therefore, we can calculate the required pressure pi for the
actuator bending angle qi in the task space by combining eqs.
(18) and (19):

( )
( )
( )

p q

p q q

p q q
i

= 2.65146 ,

= 0.00884 + 1.76401 ,

= 0.00128 + 0.6583 ,
( = 3, 4, 5, 6).

(23)
i i i i

1 1 1

2 2 2
2

2
2

4.3 Experimental methods and results

In this section, we perform experiments with the pneumatic
control platform to demonstrate how the soft robotic hand
replicates human-like grasp postures via the synergistic
control approach. The soft robotic hand is fixed on a fixed
base horizontally or vertically for the ease of executing grasp

postures. For a certain grasp posture defined by the Feix
taxonomy, we first enter its 2-dimensional synergy co-
ordinates (x, y) (i.e., the plane coordinates in Figure 8) into
the user interface. The interface calculates the required 6-
dimensional pressure signals (p1, p2, p3, p4, p5, p6) by com-
bining the synergy coordinates, eqs. (12)–(15), and (18)–
(20). Then, these pneumatic actuation signals are sent to the
dSPACE-DS1103 board to drive 6 actuators of the soft ro-
botic hand to execute the corresponding grasp posture. In the
above experimental process, all 6 actuators are driven si-
multaneously, which may cause thumb interference for some
grasp postures.
To avoid thumb interference, we further program the time

sequences of actuator pressures for different grasp postures
(the required soft actuators’ pressures are still (p1, p2, p3, p4,
p5, p6)). For a certain grasp posture, an assistant passes an
object (corresponding to the posture defined by the Feix
taxonomy) to a proper position of the soft robotic hand. The
proper position is in accordance with that of the human hand
(as illustrated in Figure 5), and the assistant may adjust the
proper position several times. The soft robotic hand then
executes the corresponding posture with the programmed
time sequences of actuator pressures to grasp the object (i.e.,
replication of the posture). We qualitatively evaluate the
replication effectiveness of the posture by observing whether
the object is steadily held over a period of time. We set the
hold time as 10 s considering both the reliability and effi-
ciency of the experiment. The posture replication is regarded
as being failed if the object drops out in less than 10 s. On the
contrary, the posture replication is regarded as being suc-
cessful.
Here, we take the experiment of Tripod as an example,

which involves four stages (see Figure 14(a)). In stage 0, the
assistant starts to pass the ping pong ball to the proper po-
sition of the soft robotic hand, and no actuator is inflated. In

Figure 14 (Color online) The tripod experiment. (a) Still images of the four stages; (b) time-dependent pressure regulation of 6 actuators in the soft robotic
hand.
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stage 1, the thumb-palm connection starts to flex to offer
circumduction for the thumb (p1=41.2 kPa) . After 300 ms,
stage 2 starts, where the index finger, middle finger, ring
finger, and little finger flex towards the palm ((p3, p4, p5, p6)=
(32.3, 27.8, 72.6, 73.7) kPa). After 500 ms, stage 3 starts,
where the thumb flexes towards the palm (p2=27.4 kPa). At
this time, the ping pong ball is grasped by the soft robotic
hand. The time sequences of actuator pressures are plotted in
Figure 14(b). The required pressures and the actual pressures
(measured by the HUBA sensor) are represented by dotted
curves and solid curves, respectively. Although fluctuations
exist in the actual pressure curves due to the abrupt switches
of the bang-bang controller [35], the pneumatic flow rate
(about 80 LPM) is large enough to compensate these fluc-
tuations. As shown in Video S1, the soft robotic hand can
execute reliable grasping without obvious vibrations. In the
future, we will try to develop control strategies for more
precise and smooth control.
We perform experiments of all 33 grasp postures (defined

by the Feix taxonomy) on the soft robotic hand. As shown in
Figure 15, 30 out of 33 grasp postures replication are suc-
cessful (see Video S1 for representative grasp postures). The
results demonstrate that the soft robotic hand can achieve
most of the human-like grasp postures with merely the first 2
synergies, and the inherent compliance helps compensate for
errors introduced by the absent synergies, the indirect DIP
joint calculation, and the object position/orientation. For
example, the relative errors of bending angles between Q
and Q are quite large for thumb-palm connection and thumb
in Fixed Hook (see Figure 10). Such a large error is typically
unacceptable for a rigid robotic hand driven by 2-dimen-
sional synergy coordinates because the object is likely to be
crushed by the rigid robotic hand. However, the error is ac-
ceptable for control of the soft robotic hand (at least in this
case) because the excessive pressures in the thumb-palm
connection and thumb do not harm the grasped object. In

another example, Palmar pinch, the directions of thumb
bending in Q and Q are reverse (–10.5° vs. 29.4°), but the
soft robotic hand can also successfully grasp the object with
the inherent compliance of thumb. This interesting phe-
nomenon is consistent with the results in ref. [13]. Figure 16
demonstrates the photo sequence of representative successful
grasp postures, such as large diameter, distal type, tip pinch
and palmar.
Failed grasp postures are writing tripod, tripod variation,

and adduction grip. The reason for the failure of writing
tripod and tripod variation is that they both require very
sophisticated coordination motions between fingers. The
reason for Adduction Grip is that no active adduction motion
is provided by the index finger and middle finger. Alter-
natively, we can wedge the object between the fingers ((p3,
p4)=(0,0) kPa) and inflate the fingers ((p3, p4)=(60,60) kPa)
to bend. The sidewalls of bending fingers have higher stiff-
nesses (compared with those of the fingers at 0 kPa) to
prevent the object from dropping out. In this sense, the
posture can be considered been invoked by the hand archi-
tecture and achieved by the actions of the finger themselves.

5 Conclusions

This paper presents a synergistic control approach for soft
robotic hands to achieve coordinated, human-like grasp
postures based on recorded human finger joint angles. First,
we develop a kinematic model of the robotic hand (with 6
soft, inflatable actuators) to describe its output postures and
input parameters. As the input parameters form a high-di-
mensional space, we leverage a PCA method to reproduce it
with a low-dimensional space formed by synergies. To de-
termine the human hand-robotic hand mapping, we conduct a
human subject study in which the subject is requested to
perform 33 grasp postures in the Feix taxonomy and his hand

Figure 15 (Color online) Still images of the 33 grasp postures of the soft robotic hand.
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joint angles are recorded to generate a dataset. PCA of the
dataset reveals that the first 2 synergies count for 89.9%
cumulative contribution of angle variance, which indicates
that 2-dimensional synergy coordinates can be used as inputs
to control the soft robotic hand. An experimental platform is
built to validate the effectiveness of the synergistic control
approach, along with the nonlinear motion characterization
of the soft actuators. The experimental results demonstrate
that the soft robotic hand is able to reliably replicate 30
human-like grasp postures with the 2-dimensional control
inputs and the help of inherent compliance.
The limitation of our approach is that the complexity of

mechanical hardware (e.g., actuators and valves) is not re-
duced. Future work will focus on exploiting the mechanical
implementation of postural synergies, which is expected to
take full advantage from the capabilities of soft robotic
hands. We will also investigate the possibility of using the
proposed approach for other human-involved applications
such as prostheses, manipulation, and human-machine in-
teractions.
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