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1. Introduction

The dexterous operation of human hands, combined with the
sophisticated sense of touch, plays a vital role in interacting with
surroundings and feeling the world.[1–3] The loss of the hand

seriously limits the person’s ability in daily
life.[4–7] The use of prosthetic hands is
proven to be a viable option for replicating
the appearance and motor function of
missing hands for individuals with
upper-limb amputation.[3,4,8–10] During
past decades, many anthropomorphic pros-
thetic hands have been commercialized to
provide dexterous grasping functionality
(such as the Vincent hand, the i-Limb hand,
the Bebionic hand, and the Michelangelo
hand), which are capable of achieving both
power grasping of heavy objects and
delicate manipulation.[11–14] However,
these existing prosthetic hands generally
fail to restore tactile sensation and sensory
feedback. Consequently, amputees using
hand prostheses usually complain during
daily use.[6,15–17] The gaps and challenges
mainly lie in: 1) designing and integrating
tactile sensor arrays for prosthetic hands to
detect rich touch information without hin-
dering themotor function and portability of
hand prostheses;[8,18,19] and 2) encoding
and transferring the sensory information

to the user in real time with high ease of wearing.[15,20]

Hence, it remains elusive to integrate tactile sensors and
wearable feedback device into an untethered prosthetic hand.

Recently, with the development of soft robotics,[21–23] various
soft tactile sensors with different sensing principles such as
resistive,[24–26] capacitive,[27–29] triboelectric,[30,31] magnetic,[32,33]

and optoelectronic[34,35] have been developed to mimic functions
of human receptors. Remarkable sensing capability such as high
sensitivity,[36–38] low hysteresis,[39,40] low detection limit,[41,42]

and high array density[43,44] have been reported to further
facilitate perceptive functions. Although these available sensors
perform fairly well at some specific tasks to capture information
about force, strain, and torque, few of them are able to be inte-
grated into the prosthetic hand due to the mismatch of mechan-
ical properties and bulky measuring instruments.[45] On the
other hand, sensory feedback is important to improve grasping
capability[46] and decrease cognitive effort.[47–49] Groundbreaking
results show that invasive implanted peripheral nerve electro-
des[15,50] can successfully help amputees regain touch sensation.
Due to the complexity of invasive surgical procedures, sensory
substitution through noninvasive methods (such as electrotactile
and vibrotactile) has been a promising alternative.[20,51,52]

Remapping the sensor’s response with an encoding strategy
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Endowing tactile feedback for prosthetic hands is profound for upper-limb
amputees. However, existing prosthetic hands are generally not in possession of
the embedded sensory feedback. Herein, a flexible tactile sensor array which can
be integrated into an untethered soft prosthetic hand to achieve static and
dynamic discrimination tasks is presented. The flexible piezoresistive sensory
arrays with 25 sensor units which can be arranged on five fingers of the soft
prosthetic hand are fabricated. According to the collected large-scale tactile
dataset (including pressure distribution and pressure magnitude) during different
grasping tasks, a learning-based classification model that can reveal the corre-
spondences between tactile information and object attributes while interacting
with touched objects is developed. To transfer tactile information extracted from
tactile sensor arrays, a wearable vibrotactile feedback band with a spatial coding
feedback strategy is implemented by selectively activating vibrotactile motors
located on the skin of the upper arm. In a set of tests performed by an individual
with transradial amputation and eight able-bodied subjects, the soft prosthetic
hand integrated with tactile sensor arrays can help the users regain finger tactile
sensation, discriminate grasped objects, and achieve real-time dynamic rolling
detection.
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through the feedback device to convey grasping information
can further improve the utility of the hand prosthesis such as
controlling of the grasping force.[20,53]

In this article, flexible piezoresistive tactile sensor arrays are
proposed for enhancing the sensing intelligence of the unteth-
ered soft prosthetic hand, as shown in Figure 1a. The developed
tactile sensor arrays with 25 sensor units can be uniformly
arranged on five fingers of the soft prosthetic hand to measure
the touch pressure. To verify its sensing capability, a series of
tests are performed to demonstrate the sensitivity and durability
of the tactile sensor arrays. After integrating tactile sensor
arrays into the soft prosthetic hand, we collect a large-scale tac-
tile dataset (including pressure distribution and pressure mag-
nitude) when performing different manipulation tasks. Then,
we implement learning-based algorithms to achieve the static
object recognition task and the dynamic rolling detection task.
In order to achieve the closed-loop control for the soft prosthetic
hand, we design a vibrotactile feedback band that is arranged on
the upper arm of the user to elicit vibratory stimulation on the
skin (Figure 1b). According to the extracted tactile information,
the spatial coding feedback strategy is employed to transfer
discrimination results to the user by selectively activating
vibrotactile motors on the skin. With a set of tests performed
by an individual with the transradial amputation and eight
able-bodied subjects, we demonstrate that the soft prosthetic
hand can help them regain tactile sensation and achieve
real-time human-in-the-loop control (Figure 1c) such as finger
recognition, diverse object classification, and dynamic rolling
direction detection only relying on the tactile feedback with a
high accuracy.

2. Results

2.1. Design and Configuration of the Flexible Tactile Sensor
Array

We design the flexible piezoresistive tactile sensor array with a
multilayer structure to measure the pressure when touching with
objects. As illustrated in Figure 2a, the piezoresistive tactile sen-
sor array is composed of six layers. A laser-cut force-sensitive film
(velostat, 0.1mm thick) is covered by two layers of metal-plated
conductive fabric electrodes (0.05mm thick). To increase the
sensitivity of the sensor unit at low pressure and obtain a stable
value of the sensor unit, a hollow polyethylene terephthalate
(PET) layer with double-side adhesive is introduced. In addition,
two layers of polyacrylate elastomers (VHB 4905, 0.5 mm thick,
3M Very High Bond tape) are utilized to encapsulate the total
structure. Depending on the inherent adhesive of the PET layer
and VHB layers, all layers can be assembled by means of
lamination, resulting in a hierarchical structure. The detailed
methods for the fabrication of tactile sensor array can be found
in Experimental Section and Figure S1, Supporting Information.
Each point of overlap between the top conductive fabric and the
bottom conductive fabric is sensitive to the normal force, which
causes the electrical resistance to decrease when being pressed
(Figure S2, Supporting Information). In addition, the proposed
tactile sensor array can be directly integrated on the soft pneu-
matic actuator. As depicted in Figure 2b, five flexible tactile sen-
sor arrays are evenly arranged on soft finger actuators of the soft
hand. With a customized readout circuit (Figure S3, Supporitng
Information), we can extract individual sensor measurement by

Figure 1. Working principle of the untethered soft prosthetic hand. a) Schematic illustration of the untethered soft prosthetic hand to build a closed-loop
control system. b) Photograph of an individual with transradial amputation wearing the soft prosthetic hand. c) Diagram of the human-in-the-loop control
of the soft prosthetic hand.
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means of multiplexing with almost 6 Hz to form a tactile image
(Movie S1, Supporting Information). When adding a small
battery, all data acquisition, signal process, and computation
are performed on board showing the potential to be integrated
into a self-contained untethered soft prosthetic hand.

2.2. Sensing Performances of the Flexible Tactile Sensor Array

To characterize the performances of the tactile sensor, we build
an experimental setup (Figure S4a, Supporting information) to

evaluate the electrical andmechanical characteristics of the tactile
sensors. A series of tactile sensor arrays are fabricated with dif-
ferent thicknesses of the PET layer (i.e., 0.06, 0.1, 0.2 mm) to
investigate the effect on the thickness of the PET layer. The
results of the single-tactile sensor unit with different PET layers
in typical force response (Figure 2c) reveal that the tactile sensor
unit with 0.1 mm PET layer exhibits a higher sensitivity at
low-pressure range and has a stable value at high-pressure range.
As shown in Figure 2d, the single tactile sensor unit exhibits a
sensitivity of 0.06 V N�1 when the force is below 5 N and
0.005 VN�1 in the high force regime of 5–13.6 N with a peak

Figure 2. Structure design and performance characterization of the flexible piezoresistive tactile sensor array. a) Exploded-view schematic illustration of
the tactile array. b) Integration of the soft hand and tactile sensor array. c) Response of the piezoresistive tactile sensor unit with various thicknesses of the
PET layer. d) Loading and unloading response of the piezoresistive tactile sensor unit. e) Response of the piezoresistive tactile sensor unit under periodic
loading force of 0.4, 1, and 11 N, respectively. f ) Cycling stability at a force of 0.8 N (�5500 s). The insets show the first 70 s cycles, the middle 70 s cycles,
and the last 70 s cycles.
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hysteresis of about 19%, which agree well with the range of grasp-
ing force for the soft prosthetic hand.[8] We further explore the
force–response capability of the tactile sensor unit. The results
(Figure 2e) show that the tactile sensor unit can reflect periodic
loads with various forces such as 0.4, 1, and 11N. Meanwhile,
the single-tactile sensor unit exhibits a force–response time of
12ms and a release time of 13ms under a low force load
(�0.6 N, Figure S4b, Supporting Information), which is faster
than the response speed of the human skin (�40ms).[54] For real-
istic scenario, repeatability is an important index to measure the
reliability of the sensor. As shown in Figure 2f, the proposed flex-
ible piezoresistive sensor is subjected to a cyclic loading/unloading
force with 0.8 N for a long time (�5500 s) with little attenuation,
revealing a good reliability. In addition, the responses at the load-
ing process of the first stage, the middle stage, and the last stage
are magnified to clearly show the reliable durability. We can see
that the response curves in different stages are very similar, dem-
onstrating its potential for applications in long-term pressure
monitoring scenarios.

2.3. Extraction of Touch Information with Learning-Based
Algorithms

Incorporating learning-based algorithm and tactile sensor arrays
is an effective way to extract touch information without an
explicit model.[55] When achieving diverse manipulation
tasks, the output signals of 25 sensor units are normalized
(see Experimental Section) and then converted into a 5� 5 tactile
image. As shown in Figure 3a, five rows of the tactile image from
top to bottom represent the output signals of the sensor units
arranged from thumb to pinky and five columns of the tactile
image from left to right represent the output signals of the sensor
units arranged from tip to root of each soft finger.

For the static classification, we need an accurate and robust
learning model. Thus, all different 16 learning models with

the same amount of data are evaluated based on their accuracy.
Notably, the logistic regression (LR) algorithm[56] is selected
because of its high computation accuracy as shown in
Figure 3b. To prevent overfitting, L2 regularization is applied
during the optimization process and the L2 ratio is set as 5.
The classification accuracy of the LR classifier begins convergent
and remains stable after around 2400 training data being utilized
(Figure 3c).

To achieve the dynamic classification task, such as rolling
direction detection, we use a long short-term memory (LSTM)
recurrent neural network. LSTM can classify the time series data
and have feedback connections to process sequences of data,
which makes it suitable for classifying dynamic motions.[57,58]

Before transferring to the LSTM layer, we first implement a layer
of deep convolutional neural network (CNN) to extract spatial
information among adjacent sensors. Then, we use a two-layer
multilayer perceptron (MLP) to fully connect them.

Except for the learning-based algorithms, a large-scale tactile
dataset with high dimension is also important to reveal tactile
information. The integration of high-density sensor units can
further enhance the recognition accuracy. Figure 3d demon-
strates the classification results when using the dataset from
the different numbers of sensor units in each finger. The results
show that the low density of sensor units cannot achieve a high
classification accuracy. The total classification accuracy using fin-
gers integrated with one sensor unit is about 33.33%. In contrast,
high-density sensor units (i.e., five units on each finger) can
achieve high static classification (93.33%).

2.4. Application

2.4.1. Untethered Soft Prosthetic Hand System

To help the user restore tactile sensation with prosthetic hand, a
soft hand and a wearable feedback band is introduced to

Figure 3. Extraction of touch information from tactile sensor arrays of the soft prosthetic hand. a) Schematic process flow from tactile sensor information
collection to real-time learning-based prediction in soft prosthetic hand. b) Classification accuracy of the test sets on all 16 machine learning algorithms.
c) The relationship between the number of training data and classification accuracy. d) Comparison of the classification accuracy when using the different
densities of sensor units in each finger.
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demonstrate the in-future prosthetic hand application. The soft
hand consists of five fingers with fiber-reinforced soft elasto-
meric actuators[8] to mimic the bending movement of the human
finger and a 3D printed palm skeleton in the shape of the human
palm. Five soft fingers integrated with flexible tactile sensor
arrays are mounted on a 3D-printed plastic palm (Imagine
8000) in the shape of a human palm. Then the palm skeleton
is connected into a customized plastic socket[8] which is specifi-
cally designed for the individual with a transradial amputation
according to the shape of his residual limb. In the socket of
the prosthetic hand, we implement two Electromyography
(EMG) sensors (Danyang prosthetic Factory Co., Ltd) and adopt
direct EMG control for the sake of reliability, robustness, and
practicality.[9] The output direct-current EMG signals (Figure
S5, Supporting Information) are used to decode two kinds of
actions (gesture opening and gesture closing) based on the
threshold control strategy.[59,60] The decoded motion intention
will be used to control the soft prosthetic hand to deliver preset
grasping types (See Note S1, Supporting Information). Based on
our modular design,[8] all the components of the soft prosthetic
hand can be contained in a small bag on the waist of the user. To
evaluate the sensing capability of the soft prosthetic hand after
integrated tactile sensor arrays, we use the soft hand (at
80 kPa pneumatic pressure to the 1 DOF finger) to grasp a series
of objects while measuring the response of the tactile sensor
array when interacting with objects. The output of the sensor unit
through the analog-to-digital converter (ADC) is linear with
respect to the interaction (Figure S6, Supporting Information).
After integrating flexible piezoresistive sensory arrays into the
soft prosthetic hand, we use the same soft prosthetic hand to
build the large-scale tactile dataset and demonstrate the restoring
tactile sensation in both static and dynamic tasks. The whole pro-
cess lasts almost four months, which also indicates the excellent
reliability of our untethered soft prosthetic hand. The compari-
son of some performances such as density of sensor units
between our work and recently reported soft hand system is
shown in Table S1, Supporting Information.

To convey the tactile sensation, we design a wearable vibrotac-
tile feedback band to inform the user of the touch information
through the waveforms created from the vibrotactile motor
(Figure S7a, Supporting Information). The vibrotactile feedback
band contains five vibration units. Each unit consists of a
3D-printed soft plastic spacer and a vibrotactile motor (10mm
diameter, 2.7 mm height, 0.9 g weight, Figure S7b, Supporting
Information). The activation voltage is kept constant at 3 V,
which causes a vibration frequency between 150 and 200Hz.
When working at applied voltage (3 V), the mechanical noise
of the vibrotactile motor is below 28 dB, which will not be uncom-
fortable to the user. The acceleration of the generated vibration is
30m s�2, which means that the users can feel the vibration
within 0.02ms, showing an excellent responsivity. The vibrotac-
tile motor can run continuously for 96 h in an environment from
�20 to 60 °C, which indicates good endurance. All five vibration
units are uniformly arranged on a sport band with the distance of
�45mm. This allows the subject to discriminate touching infor-
mation using spatial discrimination. Our vibrotactile feedback
band provides a light amount of passive squeeze to ensure
better vibration. According to the recognized results, different
vibration patterns are selectively activated on the specific

skin of the limb (see Experimental Section and Figure S7b,
Supporting Information).

2.4.2. Performance with Static Classification Tasks

To achieve the static classification task based on tactile data,
several tactile images are collected during the interaction with
different objects over many minutes to build a custom dataset
(see Experimental Section). Then, the normalized tactile data
are used as the input data of the developed machine learning
algorithm. We establish datasets about fingers recognition and
grasped objects discrimination (see Experimental Section). An
individual with upper limb amputation demonstrates that wear-
ing the soft prosthetic hand with the developed sensor arrays can
help the subject to restore some tactile sensations in static clas-
sification tasks (Figure 4a). Based on the trained model and the
spatial coding strategy for five fingers discrimination, the subject
wearing the untethered soft prosthetic hand can accurately dis-
tinguish which finger is being pressed in a blindfolded and
acoustic environment (Figure 4b and Movie S2, Supporting
Information). Different locations on each finger are considered
and we are not limited to the fingertip compared to the last
generation.[8] We use t-distributed stochastic neighbor embed-
ding (t-SNE) to visualize the group of data for fingers discrimi-
nation (Figure 4c). Each point on the plot represents the tactile
information of one finger-pressed state projected from the 25-D
tactile data into 2D. The points of the same category (with the
same color) are clustered together, forming roughly six catego-
ries of finger pressed states. In addition, the confusion matrix
shows that it has a high accuracy of correction (97.33%) in dis-
tinguishing individual finger pressed states (Figure 4d).

To expand the usefulness of the soft prosthetic hand, we
operate the hand prosthesis to grasp five standard objects with
different sizes and shapes. Notably, different orientations are
considered to make it robust. The visualization of the data for
objects discrimination using t-SNE is shown in Figure 4e and
S8, Supporting Information, shows examples of normalized tac-
tile maps. The extracted features of each finger from grasping
these five objects (Figure S9, Supporting Information) also reveal
the grasping force of each finger for each object. Then the subject
wearing an eye mask and headphones can use his own EMG sig-
nals to control the soft prosthetic hand to grasp the selected
objects in a random sequence. When the hand firmly grasps
the objects, the discrimination results are output and translated
into corresponding vibration patterns based on the previous cod-
ing method. After receiving the vibration stimulation, the subject
will intuitively control the soft prosthetic hand open to achieve
the closed-loop control. The results (Figure 4f and Movie S3,
Supporting Information) demonstrate that the subject can distin-
guish five standard objects with an accuracy of 96%.

2.4.3. Performance with the Dynamic Discrimination Task

The human hand has the ability to detect not only static
classification task (i.e., object classification) but also dynamic
discrimination task (i.e., motion direction detection).[1,2] By pro-
gramming the sequential activation sequence of the vibrators
located in the vibrotactile feedback band, we also demonstrate
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that the subject wearing the soft prosthetic hand can discriminate
the cylinder object rolling directions in the blindfolded and
acoustically shielded environment (Figure 5a and Movie S4,
Supporting Information). In this test, we first use a cylinder
(40mm) to rotate on the hand with two directions (rolling for-
ward and rolling backward, Figure 5b) and collect the response

of the tactile sensor arrays at the same time. Then a dynamic
rotation dataset is established based on the normalized
tactile data and their corresponding rotation directions
(see Experimental Section). We use the deep learning algorithms
that contain deep CNN, LSTM, and two-layer MLP based on the
PyTorch framework to discriminate dynamic rolling directions

Figure 4. An individual with a transradial amputation wearing the soft prosthetic hand, restoring the static classification function. a) Photographs of the
individual with a transradial amputation achieve static classification task. b) Demonstration of restoring the tactile sensation of an individual finger being
pressed. c) Visualizing the tactile information in the finger-pressed state dataset using t-SNE dimensionality reduction. The separation of clusters cor-
responding to each state illustrates the discriminative capability of the tactile sensor array. d) The confusion matrix of the individual finger discrimination
with an accuracy of 97.33%. e) Demonstration of restoring the tactile sensation of objects discrimination. f ) The confusion matrix of the objects
discrimination with an accuracy of 96%.
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(Figure 5c, Note S2, Supporting Information). The discrimina-
tion accuracy of the optimized learning architecture begins
convergent and remains stable after 15 training cycles for both
training and testing datasets (Figure 5d). Finally, the amputee
subject wearing the soft prosthetic hand can well discriminate
dynamic rolling directions with a high accuracy of 94%
(Figure 5e).

3. Discussion

In this article, we report a flexible tactile sensor array which can
be integrated into an untethered soft prosthetic hand to help the
transradial amputee subject restore tactile sensation and improve
object recognition. The developed flexible piezoresistive sensor
arrays including 25 tactile sensor units are conformally inte-
grated on each finger. In this sense, the soft prosthetic hand
can detect tactile information such as pressure magnitude and
pressure distribution when grasping objects. To reveal the cor-
respondences between tactile information and object attribute
while interacting with touched objects, we implement
learning-based algorithms. Combined with the EMG-decoding

algorithm and the vibrotactile feedback, eight able-bodied sub-
jects and an individual with transradial amputation cannot only
intuitively control the soft prosthetic hand to achieve grasping
tasks but also can restore finger tactile sensation and discrimi-
nate the grasped objects in a blindfolded and acoustically
shielded environment. We have also experimentally demon-
strated that the subjects can achieve a dynamic discrimination
task such as discriminating the rolling direction of a cylinder.
To further improve the sensation performance, a higher density
of tactile sensor unit and the multimodal sensor would be
integrated into this untethered soft prosthetic hand. For more
realistic applications, advanced learning algorithms and more
real feedback strategy still need to be investigated.[20,43] We
anticipate that this work will accelerate the application of soft
prosthetic hands for amputees in daily activities.

4. Experimental Section

Fabrication of the Flexible Piezoresistive Tactile Sensor Array: The fabrica-
tion process of the flexible piezoresistive tactile sensor array is illustrated
in Figure S1, Supporting Information. The velostat (3M Velostat electrically

Figure 5. An individual with a transradial amputation wearing the soft prosthetic hand, restoring the dynamic discrimination. a) Photographs of the
individual with a transradial amputation achieve dynamic discrimination task. b) Demonstration of restoring the tactile sensation of rolling direction
detection. c) The neural network architecture used for restoring the dynamic discrimination from tactile information (5� 5 arrays). d) The change in
classification accuracy of the neural network with the increase of training cycles. e) The confusion matrix of the dynamic rolling discrimination with an
accuracy of 94%.
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conductive copolymer 0.1 mm thick; Adafruit Industries) served as the
sensing layer and was cut to evenly fit a soft finger by a laser-cut machine
(VLS3.50, Universal Laser Systems, Inc., USA, Figure S1a, Supporting
Information). To avoid movement of the velostat layer in the laser-cutting
process, a thin layer water was introduced to attach the velostat layer to an
acrylic board. Then, the laser-cut sensing layer was washed to remove
debris from the surface. The laser-cut conductive fabric (fabric plated with
copper and nickel, shier Co. Ltd., China) was arranged on either side of the
sensing layer, ensuring that there was no contact between electrodes.
Notably, to increase the sensitivity of the sensor at low-pressure range,
a laser-cut hollow PET layer with double-side adhesive was used
between the sensing layer and the bottom electrode. The overlap region
between the top and bottom electrodes could respond to force through a
change in the resistance of the sensing layer. Two layers of VHB were laser
cut with finger structure for encapsulation. All layers were laminated
depending on the inherent adhesive of the PET layer and VHB layers
(Figure S1b, Supporting Information). Finally, the conductive fabric
was connected to copper wires through thermal welding two layers of
weft-knitted polyester fabric coated with TPU (Figure S1c, Supporting
Information). The fabric-encapsulated conductive electrodes were
connected to the readout circuit. Using the thermal welding process to
connect the conductive fabric to copper wires resulted in a robust electrical
contact, which is of great significance for long-term use.

Characterization of the Tactile Sensing Arrays: We conducted a series of
tests to investigate the mechanical and electrical properties of the tactile
sensor array. The experimental setup is shown in Figure S4a, Supporting
Information. A stepping motor-driven stage (HST-200, OptoSigma Inc.,
Japan) equipped with a force gauge (LSB205, Futek Advanced Sensor
Technology Inc., USA) at the end was used to apply uniformly normal
force. The applied load was controlled at a specific strain rate for different
tests (0.002–0.005m s�1). During the experiment, both the force value
and the sensor output were collected using a real-time control board
(DS1103, dSPACE Inc., Germany) with 16-bit ADCs.

Assembly of the Soft Prosthetic Hand: We used a surface-treating agent
(Ausband 770, xinnuotai Co. Ltd., China) to activate silicon surfaces of the
soft finger for the robust bond with the VHB elastomer surface of the tac-
tile sensor array. Then the tactile sensor array and the soft finger were
glued together using the liquid elastomer (weiligu Co. Ltd., China).
After curing for about 12 h at room temperature, the tactile sensory array
and the soft finger were perfectly aligned. Furthermore, five soft fingers
after integrated tactile sensory array were installed into the 3D-printed
photosensitive–resin palm skeleton (Imagine 8000, SOMOS Inc.,
Netherlands) through the threaded connection.

Data Acquisition and Normalization Process: The signal of each tactile
sensor unit on the soft prosthetic hand was sampled by an ADC converter
after being conditioned by the multiplexer circuit (Figure S3, Supporting
Information) and then sent to a credit card-sized board (up core plus,
yanyang Co. Ltd., China) through COM (cluster communication port)
for processing. Each set of tactile data contains 25 signal values of 5 tactile
sensor arrays integrated on the soft hand. Then the measured signal of
each sensor unit was normalized to 0 to 1. Specifically, normalization
was carried out by taking the maximum value of quantity as 1 and the
minimum value as 0. We defined 25 normalized signal values from five
sensor arrays as a set of data. In discriminating finger press state, we
pressed each finger in different locations for some minutes and the tactile
responses were collected simultaneously. Due to the higher density of tac-
tile sensor unit compared to our previous work,[8] the press region was not
limited to the fingertip. The total dataset was required through pressing
finger about 360 times and each group contained 10 sets of tactile data. In
discriminating 5 daily objects, the total dataset was required through
grasping these objects with different orientations and locations about
360 times and each group contained 10 sets of tactile data. In discrimi-
nating dynamic rolling direction, the total dataset was required through
rolling the cylinder in different directions about 1500 times and each group
contained 1 set of tactile data. The training and testing datasets were ran-
domly selected from the total dataset. To prevent overfitting, the dataset
was randomly divided into a training set, a validation set, and a test set at a
ratio of 7:2:1. Besides, the training process was terminated when the lost

function evaluated by the validation set stopped decreasing for ten training
epochs.

Experiments with Human Subjects: All experiments were conducted in
accordance with the declaration of Helsinki and approved by the Ethics
Committee of Human and Animal Experiments of Shanghai Jiao Tong
University. The individual with transradial amputations who participated
in this study was recommended by Shanghai Liankang Prosthetics and
Orthotics Manufacturing. The able-bodied subjects were recruited from
Shanghai Jiao Tong University. The participants did not have any previous
neuromuscular disorders and were informed about the experimental pro-
cedure and signed the informed consent forms before participation. The
authors affirmed that human research participants provided written
informed consent for the experimental procedure and publication.

The Training Process for Tactile Feedback: In the training process for tac-
tile feedback, the vibration was activated repeatedly for three periods. Each
period consisted of 5 s vibration and 3 s interval. During the training pro-
cess, we first activated the vibrotactile motor from one to five in sequence
for five times to let the subject remember the location and the feeling of
the stimulation. The frequency and amplitude of stimulation were the
same for all vibrotactile motors involved in the experiments. The subject
was told to learn the five vibration sites for five discrimination targets.
Then, we activated the vibrotactile motor in a random order to check
whether the subject can discriminate the activated vibrotactile motor
on the basis of the vibration stimulation. In the discriminating finger press
state, the vibrotactile motors from 1 to 5 corresponded from thumb to
pinky. In discriminating five daily objects, the five vibrotactile motors from
1 to 5 corresponded to goblet, thread, ball, multimeter, and swab. The
training process lasted about 10min. In the discriminating dynamic rolling
direction, we activated the vibrotactile motors in a sequence (i.e., clock-
wise activated and anticlockwise activated) to map different rolling direc-
tions. During each sequence, each vibrotactor was activated for 4 s and the
adjacent vibrotactor was also activated before the vibration of the previous
vibrotactor finished (1 s ahead). Eight able-bodied subjects were recruited
to test the spatial coding method. All subjects were blindfolded and acous-
tically shielded to eliminate visual and auditory feedback interference.
Results (Figure S10–S12, Supporting Information) showed that all sub-
jects could achieve both static and dynamic discrimination tasks relying
on the vibrotactile feedback with high accuracies. The reason causing
the final classification error consisted of model error in the model predic-
tion stage and cognitive error from vibrotactile feedback in the feeling of
vibration stimulation stage. Surfaces of grasped objects such as swab,
goblet, and thread were all nearly cylindrical, which resulted in similar tac-
tile images. This similarity may lead to prediction errors when the learning-
based model was trained without huge dataset. Although prediction errors
exist, we believed that the classification accuracy (>95%) was sufficiently
high for daily applications. In our future work, we will employ two methods
to correct these prediction errors: one is to create a larger training dataset,
such as repeatedly collecting data with various grasping positions for more
days, and the other is to utilize more powerful neural networks, such as
autoencoders and attention-based CNNs.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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