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Abstract—Trajectory tracking control of flexible continuum 

robots is challenging due to their inherent compliance and highly 

nonlinearity. Many related works exclude the control of the end’s 

orientation, i.e., only the end’s position is considered. In this 

paper, a differential-algebraic equations (DAEs) model-based 

instantaneous optimal control (IOC) framework for the end’s 

position and orientation cooperative tracking of a cable-driven 

tensegrity continuum robot (TCR) is developed. Based on the 

tensegrity concept, a TCR is designed first as the control object, 

which can achieve multimode deformations such as bending, 

scoliosis, contraction, and the S- or J-shape. Then, the actuation 

of cables is introduced as the system kinematic constraints from 

the view of multibody dynamics, so that a control-oriented model 

of the TCR can be built by DAEs. Subsequently, the original 

continuous trajectory tracking problem is approximated for a 

series of IOC problems at each discrete time slot. Finally, 

considering the constraints of control input saturation, a linear 

complementarity problem (LCP) was derived for solving these 

IOC problems. The method provides an easy-to-implement and 

unified framework for addressing the trajectory tracking control 

issues of cable-driven continuum robots, which can improve the 

control performance of the position-only tracking controllers and 

exploit the TCR’s advantages to handle more application 

scenarios. The advanced performance and potential applications 

of the proposed controller have been evaluated via several 

numerical simulations and experiments on the TCR prototype. 

Index Terms—Position and orientation tracking control, 

tensegrity continuum robot, DAEs model, cable-driven, input 

saturation 
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Fig. 1 Motion patterns of continuum robots: (a) insertion, (b) 

coiling, and (c) circumnutation 

I. INTRODUCTION 

CONTINUUM robot [1]-[4] is a biologically inspired 

slender hyper-redundant mechanism, which provides 

remarkable adaptability to unstructured and difficult-

to-access environments owing to its intrinsic compliance. In 

recent years, numerous scenario applications for continuum 

robots have been suggested, including in-situ inspection and 

repair for aeroengine [5], active hose for fluid delivery [6], 

operation in the nuclear industry [7], and minimally invasive 

surgeries with the da Vinci Surgical System. These 

applications usually require high-performance motion control 

strategies, which remains a thorny issue in continuum robots. 

Actually, as presented in Fig. 1, the motion of continuum 

robots can be roughly classified into three typical patterns: 

insertion, coiling and circumnutation. Most existing motion 

control approaches of continuum robots essentially strive to 

tune these motion patterns to achieve certain required tasks. 

They can be divided according to their modeling methods: the 

model-based controllers [8], the model-free controllers based 

on some data-driven techniques such as machine learning and 

empirical methods [9], and the hybrid model controllers [10]. 

This research work is mainly focused on model-based control 

strategies. A popular motion control approach of continuum 

robots is to use arcs with constant curvature (CC) or piecewise 

constant curvature (PCC) [11] to roughly describe the body 

deformations; then certain kinematic model-based controllers 

can be designed. Similarly, some function parameterization 

models such as Bézier curve [12] can also be used to describe 

the deformation of continuum robots. But these kinematics 

models only based on the geometry of a robot can not properly 

describe the mechanics of its structure. Another modeling 

method for continuum robots is the pseudo-rigid-body model 

[13], which simplifies the continuum robot into a rigid chain 

interconnected by joints. However, this model may lack 

accuracy when addressing complex deformation patterns or 

rapidly moving objects. Therefore, researchers are beginning 

to seek control strategies based on dynamic models with 

considerations of internal and external forces. But the dynamic 

model-based control of continuum robots would be more 

complex, and is yet not well investigated, because of their 

A 

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3543292

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 23,2025 at 08:11:24 UTC from IEEE Xplore.  Restrictions apply. 



2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

compliant nature and strong nonlinearity. 

Herein, inspired by the fact that the end’s Cartesian position 

and orientation are two crucial geometric features contained in 

the motion patterns, which can affect the overall configuration 

of a continuum robot, thus, we will focus on the trajectory 

tracking control for both the end’s position and orientation of 

continuum robots. In the past few decades, various trajectory 

tracking control approaches for continuum robots have been 

developed, such as the proportional-derivative (PD) control 

[14], [15], the sliding mode control [16], [17] the model 

predictive control (MPC) [18], [19], and some other 

techniques [20], [21]. All these approaches have been proven 

to be effective for trajectory tracking control of continuum 

robots by numerical simulations or experiments. However, 

most of them ignore the end’s orientation in favor of just 

controlling the end’s position. Until recent years, a few works 

on the end’s position and orientation control in the field of 

magnetic and pneumatic continuous robots have emerged 

[22]-[24]. But there are still few reports on this issue for the 

cable-driven tensegrity continuum robots. 

In theory, the control performance of the aforementioned 

model-based trajectory tracking strategies can be significantly 

improved by implementing feedback on the robot prototype 

[25]; however, the introduction of the end’s orientation will 

pose certain new challenges. First of all, it will increase the 

burden of feedback information measurement for a closed-

loop controller. The motion control model of continuum 

robots is commonly built by the geometrically-derived PCC 

methods or the Cosserat rod theories [26], which contain 

attitude angles as basis variables in the governing equations. It 

usually needs to implant some specialized attitude measuring 

devices into the robot body to obtain the angles. Furthermore, 

the PCC or the Cosserat rod may not precisely reveal the 

configuration of the continuum robot, particularly for the 

proposed TCR with axial compression that will alter the body 

stiffness. Second, the solution to the control problem will be 

more complex. Mathematically, the tracking control of the 

end’s orientation can be described as a nonlinear equality 

constraint concerning the state variables. When coupled with 

the large flexible deformation of the TCR, the entire control 

system will be a high-dimensional constrained nonlinear 

optimization problem, whose optimal solution is usually 

difficult to achieve.  

In this work, based on the tensegrity structure [27], a special 

cable-driven continuum robot named the tensegrity continuum 

robot (TCR) is used as the control object; it will be introduced 

in the next section in detail. Then, to address the above two 

challenges on position and orientation tracking controls, we 

have made the following efforts accordingly. 

For the former challenge, the end’s orientation, actually, 

can be determined by the position coordinates of three non-

collinear points on the end section. Thus, the measurement of 

the end’s orientation can be replaced by that of point positions. 

Then, to better predict the elastic and large-scale deformations 

of the TCR, a positional finite element method (PFEM) was 

developed to establish the dynamic control model. Compared 

with the classical FEM [28], the absolute node positions in the 

global coordinate system are taken as the basic variables in the 

PFEM framework. A similar description can also be found in 

[29], where a dynamic model of class-1 tensegrity is built 

based on the global position of the rod endpoints. As a result, 

the original sampling data of the robot’s positions measured 

by a visual or other positioning sensor can be used as the 

feedback data without any further conversion. This can reduce 

the measuring errors and the sampling time to some extent. 

Furthermore, when the mass of sliding cables can be ignored, 

the system mass matrix by the PFEM will be constant [30]. 

So, it can avoid to calculate the additional inertia stiffness 

caused by the mass matrix when solving the Jacobian matrix 

of the dynamic system. 

For the latter challenge, in order to control a continuum 

robot, the mapping between the low-level actuator space and 

the high-level task space that contains the end’s position and 

orientation of the robot needs to be formulated first [31]. In 

fact, from the view of multibody dynamics, the actuation of 

cables for the TCR can be introduced as the system driving 

constraints, which can be described by kinematic constrained 

algebraic equations. Therefore, joined with the dynamic 

differential equations as stated above, the trajectory tracking 

control system of the TCR can essentially be described by the 

differential-algebraic equations (DAEs). In this way, the 

actuation lengths or speeds of the driving cables, i.e., the 

sliding cables here, can be employed as the control inputs, so 

that the controller will be compatible with the operating modes 

of commercial motors directly. However, the control theory of 

a DAEs system will be more complex than that of ordinary 

differential equations (ODEs) systems, which are commonly 

used in the literature on model-based control for continuum 

robots [32]-[34]. The challenge mainly comes from the fact 

that the global optimal solution, which satisfies the DAEs 

coupled with other control conditions such as input saturation 

is difficult to obtain. Therefore, in this work, inspired by the 

idea of the instantaneous optimal control (IOC) method, which 

was first introduced for seismically excited structural vibration 

control [35], the original global optimal control problem in the 

whole continuous time domain will be transformed into an 

instantaneous suboptimal problem at each discrete time slot. 

Then, a DAEs model-based IOC approach is developed. 

Additionally, the input saturation is taken into consideration, 

i.e., the actuation lengths or speeds should be restricted within 

safe bounds. The IOC problem will be further transformed 

into a linear complementarity problem (LCP).  

The main contributions of this article are summarized as 

follows: 

1) A control-oriented formulation of the end’s position and 

orientation tracking for the TCR is established. On the one 

hand, the governing equations are described by the node’s 

positions in the global coordinate system so that the sensor 

feedback information can be used directly. On the other hand, 

the cable actuation is transformed into system kinematic 

constraints with driving lengths or speeds as the control inputs 

so that the controller will be more compatible with the 

operating modes of most commercial motors. 

2) A DAEs model-based IOC algorithm framework for the 

end’s position and orientation collaborative tracking control of 

the TCR with input saturation is proposed. The core idea of 

the proposed controller is to transform the original optimal 

control problem in the continuous time domain into an IOC  
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Fig. 2.  Structural design and dexterous motion of the bio-inspired tensegrity continuum robot (TCR): (a)-(b) the designed robot 

consists of compression rods and torus, tension cables, and six sliding cable actuators; (c) a few configurations including the J-, 

S-, I-, C-, O- and L-shape generated by the proposed IOC controller. 

 
Fig. 3.  Fabrication of the TCR: (a) the compliant tensegrity joint; (b) assembly by the tensegrity joints; (c) the body structure of 

the TCR; (d) the 3D printing experimental prototype.  

problem at each discrete time slot so that a local suboptimal 

solution can be obtained. The effectiveness and potential 

applications of the proposed approach were illustrated by the 

experiments on the bio-inspired TCR. 

The rest of this article is organized as follows. In Section II, 

the design and fabrication of a tensegrity continuum robot is 

presented. The dynamic model is derived briefly in Section III. 

Then, in Section IV, a DAEs model-based IOC approach for 

the end’s position and orientation tracking control of the TCR 

is proposed in detail; and its stability is discussed. The control 

performance and the potential applications of the proposed 

controller are demonstrated by experiments and simulations in 

Section V. Finally, Section VI concludes this article. 

II. STRUCTURAL DESIGN AND FABRICATION 

Tensegrities [36]-[38] are a kind of self-stressed structures 

constructed with a set of compression elements suspended in a 

continuous network of tension cables, which have favorable 

properties such as high resistance-to-mass ratio and exhibiting 

dexterous motions with fewer actuators. Currently, despite 

several continuum robots employing tensegrity have been 

developed [39]-[41], they are all single section with relatively 

simple motion modes. Here, as shown in Fig. 2(a), a spine-

inspired tensegrity continuum robot (TCR) is designed as a 

compliant serial structure composed of several compression 

elements (rods and torus) and tension cables (or springs). The 

compression components imitate the vertebral bones, while 

the tension cables can realize the function of intervertebral 

discs and ligaments to help stabilize the overall structure. 

Driven by six sliding cables distributed around the periphery 

of the robot body, the proposed TCR can achieve multimode 

deformations, including the J-, S-, I-, C-, O-, and L-shape as 

presented in Fig. 2(c). These configurations were designed by 

the tracking controller proposed in this article without 

increasing the structural and operational complexity. 

Specifically, Fig. 3 shows the fabrication processes of our 

TCR. Firstly, three triangularly distributed support rods are 

connected with a torus, which form a basic module of the 

TCR, i.e., a conical vertebra. Then, three tension cables are 

used to connect two adjacent modules (a base and a follower) 

and provide a tension network to support the follower module 
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suspended below the base module. This connection structure 

can actually be regarded as a tensegrity joint with six degrees 

of freedom (DOF). Compared to a rigid rotational joint, the 

flexible tensegrity joint not only has low friction without any 

direct contact between stiff components, but it also offers 

three small ranges of translational DOF, especially, the axial 

contraction motion DOF that can greatly expand the robot’s 

workspace. Furthermore, the tensegrity joint is also a kind of 

variable-stiffness mechanism that can change stiffness by 

adjusting the prestress forces of the tension cables. Finally, as 

shown in Fig. 2(a), a two-segment TCR can be obtained by 

assembling all modules with the compliant tensegrity joints 

and configuring 6 sliding cable actuators on the periphery of 

the robot body in two groups. The sliding cables (blue lines) 

numbered 1, 3, and 5 pass through the entire robot body, while 

the other sliding cables (red lines) numbered 2, 4 and 6 only 

crosse the holes from the base to the 8th torus. The 3D printing 

prototype is presented in Fig. 3(d). It consists of one base, 13 

modules, 6 high-strength nylon cables, several tension springs 

and pins. The total length and cross-sectional diameter of the 

TCR are 0.7 m and 0.07 m, respectively.  

Before the end of this section, some excellent features of 

the proposed TCR are summarized as follows. (a) Thanks to 

the compliant tensegrity joints, the TCR allows a wide range 

of axial contraction motion, which makes it more dexterous; 

(b) Benefiting from the tensegrity design concept, the TCR 

has a high volume-mass ratio and is very lightweight; (c) The 

structural stiffness of the TCR can be changed just by altering 

prestress of the tension components. 

III. DYNAMIC MODELING AND PARAMETER IDENTIFICATION 

From the perspective of structural dynamics, the FEM such 

as the complete Lagrange method [42] or the co-rotating 

coordinate method [43] can be used to establish the model of 

tensegrity structures with geometric nonlinearity. However, in 

the classical FEM, element formulation should be derived first 

in the local coordinate system; and then, be transformed to the 

global coordinate system. This transformation involves a large 

number of trigonometric function matrix operations, which is 

tedious and time-consuming. In order to overcome this defect, 

a so-called position FEM (PFEM) will be adopted for the TCR 

modeling in this work. Based on the PFEM, all the node 

position coordinates are taken as the generalized coordinates 

to describe the TCR’s configuration; the dynamic equations 

can be established in the global coordinate system directly. So 

that the feedback, i.e., the current configuration of the TCR 

can be measured directly by visual equipment, without any 

data conversion or analysis. To this end, the data reliability 

and sampling efficiency of the real-time feedback for the 

subsequent close-loop controls can both be guaranteed. The 

dynamic modeling and system parameter identification are 

presented in the following subsections. 

A. Dynamic Modeling Based on the PFEM 

As shown in Fig. 4, the TCR is made up of four types of 

elements: rod, classical cable, sliding cable and torus. To 

avoid ambiguity, three modeling assumptions of the TCR have 

been noted: 1) the rods are slender so that the rotation effects  

 
Fig. 4.  Elements of the TCR: (a) a rod or classical cable 

element, (b) a sliding cable element, (c1-c2) a perspective and 

top view of the torus element, respectively. 

 

along the axial direction can be neglected; and their bucking 

behavior are not considered; 2) the friction at the contact point 

between two elements is ignored. Based on these assumptions, 

the dynamic model of the TCR can be built using the PFEM. 

The detailed derivation of dynamic formulas for the first three 

elements can be seen in our previous work [30]. For the torus 

element, the generalized coordinates and the matrices of mass, 

stiffness and damping are derived as follows. 

1) Derivations for the Torus Elements: Firstly, as shown in 

Fig. 4(c1), the torus element can be described by the three 

vertices (N1, N2, N3) of its inscribed regular triangle. The 

generalized coordinates of the torus element are given as 

 1 2 3 1 1 1 2 2 2 3 3 3=
T TT T T

s , , ,x , y ,z ,x , y ,z ,x y ,z     q r r r   (1) 

where ri denotes the position coordinates of node Ni. To obtain 

the position coordinates for any point named N  on the torus 

element, the angle  between '

io N and 'o N is introduced. 

Let oN r , o' oo'r , '

i io Nn  (i = 1, 2, 3), the position 

coordinates of a point N can be derived as 

 

1 2 3

2 2 4
cos( ) cos( ) cos( )

3 3 3

o' o'o'N 

 
  

   

 
       

 

r r r

n n n
  (2) 

where  1 2 3, 3, 1,2,3i i o' o' / i     n r r r r r r .  

Subsequently, we assume that: (a) the thickness, i.e., the 

cross-section area of the torus element is small enough; and (b) 

the rotational effect can be ignored. Based on these two 

assumptions, the kinetic energy can be derived, given as 

 

2 2

0 0

0 5 d 0 5 dT T T

s s sT . b . b
 

      
 

   
 

 r r q A A q   (3) 
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where 
s/    A r q ℝ3×9, b and ρ are the radius and the 

linear density of the torus element, respectively. Thereby, the 

mass matrix of the torus element can be obtained, given as 

 

2

9

0

2
d

3

T

s b b


 


   M A A I   (4) 

Then, according to the stress characteristics of the torus 

elements, as shown in Fig. 4(c2), the generalized internal force 

of the torus element fs can be approximately simulated by the 

superimposed force of three virtual rod elements fri (i.e., the 

sides of the inscribed triangle) on the nodes N1, N2 and N3. The 

equivalent stiffness matrix and damping matrix of the torus 

element, i.e., Ks and Cs, can be obtained just by superposing 

and assembling the stiffness and damping of the above three 

virtual rod elements, given as  

 
1, 2, 3 1, 2, 3 1, 2, 3

, ,s ri s ri s ri
i i i  

  f f K K C C   (5) 

where the operator    denotes the finite element assembly, 

the specific expressions of Kr and Cr can be found in [30]. 

Furthermore, the boundary conditions of the cable-driven 

actuation should be introduced. 

2) Boundary Conditions of the Cable-Driven Actuation: In 

this work, inspired by the fact that many physical actuation 

modes for the continuum robots such as the gas-driven mode, 

the liquid-driven mode and the cable-driven mode can be 

directly transformed into geometric changes. That is, the 

actuation boundary conditions can be translated into the 

corresponding geometric constraints. For example, the cable-

driven mode can be described as the length constraints, and 

the fluid-driven mode including gas-driven and liquid-driven 

can be described as the area or volume constraints. Based on 

this idea, the boundary conditions of the sliding cable-driven 

actuation for the TCR will be constructed. 

As shown in Fig. 4(b), the sliding cable can be connected to 

an actuator at the endpoint Nn+1 to drive the TCR for bending, 

contracting, and other movements. The real displacement of 

the actuation point Nn+1 should be equal to the length driven 

by the actuator. Thus, the kinematic boundary condition i of 

the ith sliding cable can be obtained. 

 
0

( ) = ( , ) + ( )d

t

end

i ci ci i,t d t v t t q q   (6) 

where ciq denotes the generalized coordinates of the ith sliding 

cable, iv  denotes the actuation speed by the actuator, end

cid  

denotes the driving length, which can be calculated by the rest 

length '

cil , given as  

 
1

'( )

1

( , )= ( ( )) ( (0)),
n

end ' ' ' k

ci ci ci ci ci ci ci ci

k

d t l t l and l l




 q q q   (7) 

where '( )k

cil denotes the length of the kth section ( +1k kN N  ) of 

the sliding cable. If the point Nn of the sliding cable is fixed 

and the actuation point Nn+1 moves along the straight line 

1,n nN Nl


, end

cid  can be simplified as  

 ( , )= ( ) (0)end end end

ci ci ci cid t t q q q   (8) 

where end

ciq denotes the position coordinates of the actuation 

point for the ith sliding cable. Then, all kinematic boundary 

conditions, which belong to the holonomic constraints, can be 

assembled, i.e., 
1 2( ) [ , , ]T

m,t = Φ Φ ,Φ Φ q 0 , where m is the 

number of active sliding cables. 

Finally, the Lagrange function of the TCR system can be 

derived by assembling the mass matrix and the generalized 

forces of all elements. Based on the second Lagrange equation, 

the dynamic model of the cable-driven TCR can be achieved. 

 
( )

( ) =

T

in ext,

,t

    



q
Mq Φ λ f q q f

Φ q

0

0
  (9) 

where (9) is known as the differential-algebraic equations 

(DAEs), which contains the differential equation (the 1st one) 

and the algebraic constraint equation (the 2nd one). M ℝn×n 

denotes the system mass matrix; λ ℝm×1 denotes the 

Lagrange multipliers; n and m are the number of generalized 

degree of freedom and holonomic constraints, respectively. 

The item 
T

qΦ λ  physically represents the driving force vector 

applied to the active sliding cables. in f ℝn×1 denotes the 

generalized internal force vector including the elastic forces 

and damping forces; and ext f ℝn×1 denotes the external force 

vector. 

Remark 1: It notes that M will be a constant matrix when 

the mass of the sliding cables is small enough to ignore their 

dynamic effects. The detail discussions can be found in [30]. 

B. Parameter Identification Using the PSO Approach 

To make the theoretical model (9) can more accurately 

estimate the deformation and other mechanical behaviors of 

the TCR, some unknown but critical parameters such as elastic 

modulus need to be identified. According to the essential idea 

of the parameter identification technology, the identification 

problem can be described in a way that finds the optimal 

parameters to minimize the mean position errors between 

simulation and experiment under certain constraints. It can be 

formulated as a constrained optimization problem. 

 

1 2

1 11 2

1

(9)

n n

ij ij

i j

min. max .

find

ˆmin . p
n n

s.t. Eq. with unknown parameters

 



  



  


ζ

ζ

q q

ζ

ζ ζ ζ

  (10) 

where ζ is the model parameter to be identified; ζmin. and ζmax. 

are the corresponding feasible boundary values. 
ijq  and

ijq̂ are 

the node position coordinates obtained by the theoretical 

model-based simulations and the experimental measurements 

with the motion capture system, respectively. The subscript ‘i’ 

and ‘j’ represent the results obtained at the jth moment (j=1, 

2, …, n2) with the ith group actuation inputs (i=1, 2, …, n1). 

 In this work, as shown in Fig. 3, the TCR prototype is a 

rigid-flexible system. Because the rod and torus elements are 

relatively rigid, their elastic modulus deviation has little 

impact on the mechanical responses; while the classical cables 

(the springs) and the driving sliding cables (the nylon ropes) 

are flexible components, their elastic modulus will be the main 

factors for determining the system’s inherent stiffness. Thus, 

only the elastic modulus of the classical cables and the sliding 

cables are chosen for material parameters identification; while 
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other parameters are given based on their theoretical values. 

After determining the model parameters to be identified and 

achieving the experimental sampling data, a mature intelligent 

optimization algorithm, named particle swarm optimization 

(PSO) will be used to solve the above optimization problem 

(10). The PSO solver can be called in MATLAB software by a 

script function “particleswarm”.  

IV. POSITION AND ORIENTATION TRACKING CONTROL WITH 

INPUT SATURATION 

In this section, based on the DAEs model, an IOC approach for 

the position and orientation tracking control of the TCR with 

input saturation is proposed. The formula derivation and stability 

discussion can be found in the following subsections.   

A. Problem Formulation 

Driving by several sliding cables, the position and orientation 

collaborative tracking control of the TCR can be described as a 

kind of nonlinear optimal control problem (NOCP): 

  

1

2

0

3

1

1

2 3 2 2 1

( )

( ( )) ( ( )) +

( ( )) ( ( )) d

( ) ( )

, ,

( , , ) =

1
( , ) =

3

( , ) = , ( ) ( )

( )

f

T

t

T

T

T

k

k

min max

find t

ˆt t

ˆmin. J t t t

ˆt t

s.t. t

t

h t

h t

t






    
 

      
     

  




    

 





q

u

y y Q y y

n n Q n n

u R u

Mq Φ λ F q q

Φ q u

y q r

n q d d d r r r r

u u u

0

0












  (11) 

where tf is terminal times; k
ˆ Q ℝ3×3 (k=1, 2) and ˆ R ℝ3×3 

are the nonnegative and positive definite symmetric weighting 

matrices, respectively. h1 and h2 are the output functions for 

computing the end’s position ( , )t y q  ℝ3×1 and its orientation 

( , )t n q ℝ3×1, respectively; the operators‘ ’ and ‘  ’ denote 

the cross product and the Euclidean distance, respectively; 

( )t y ℝ3×1 and ( )t n ℝ3×1 are the target position and the 

target orientation; F = fext－fin is the apparent force vector; the 

control inputs ( )t u ℝm×1 (the driving speeds or lengths) is not 

free but subject to the box constraints of input saturation 

shown in (11). So far, the DAEs model-based tracking control 

problem of both the end position and orientation for the TCR 

has been formulated. 

The NOCP (11) is an open-loop control problem for the 

DAEs system, which aims to find the optimal solution in the 

entire continuous time domain [0 tf]. Existing strategies for 

solving this problem can be roughly categorized as direct or 

indirect methods. The direct methods transform the original 

control problem into a nonlinear programming (NLP) problem 

by a discrete scheme [44]. They are favored for their intuitive 

and unified solution framework to different control systems 

and constraints. However, due to the high-dimensional nature 

of TCR, the scale of such an NLP problem will be very large. 

It will take much time or maybe fail to achieve convergence. 

The indirect methods transform the original control problem 

into a series of nonlinear equations by deriving the first-order 

optimality necessary conditions in state space [45], [46]. 

These methods ensure at least local optimality but require a 

reasonable initial guess, which can be challenging to provide. 

In this work, to overcome the above difficulties in solving 

the NOCP, inspired by the idea of the IOC approach, the 

original global optimal control problem in the continuous time 

domain [0, tf] can be discretized into a series of suboptimal 

control problems at each time step. Thus, the computational 

burden of the controller can be significantly reduced. Besides, 

since the IOC is a close-loop controller running step by step, 

the results of the last step can serve as the initial values for the 

current step. Therefore, the difficulty of initial guessing can 

naturally be avoided. In the following subsections, the IOC 

approach for the position and orientation tracking control of the 

TCR will be presented in detail. 

B. Algorithm Construction of the IOC controller 

To establish the IOC controller, the continuous time domain 

[0, T] is discretized into N time slots with equal time step 

length η, η = T / N. Then, the dynamic model of the TCR, i.e., 

the equality constraints DAEs in (11) should be discretized by 

some numerical integration schemes. Here, an implementation 

using the generalized-α scheme is presented. 

In the generalized-α algorithm, the basic assumptions for 

the generalized coordinates q  and velocities q  in the 

discrete-time slot [tk, tk+1] are as follows 

 2 2

1 1(0 5 )k k k k k.         q q q a a   (12) 

 1 1(1 )k k k k      q q a a   (13) 

where a is an acceleration-like auxiliary variable. It is defined 

by the recurrence relation. 

 1 1

0 0

(1 ) (1 )m k m k f k f k        




a a q q

a q
  (14) 

where the parameters ,m f ,   and   can be selected to have 

suitable accuracy and stability properties. Herein, a selection 

method developed by Chung et. al [47] is adopted. That is,  

 2

(2 1) ( 1) ( 1)

(1 ) 4 0 5

m f

f m f m

,

/ , .

     

     

    

     
  (15) 

where [0,1]  denotes the spectral radius of the algorithm, 

which is a measure of numerical dissipation; a smaller ρ 

corresponds to greater numerical dissipation. In this work, ρ is 

set to 0.8. In addition, the variables ,q q and q  should satisfy 

the DAEs at time tk+1. Thus, we have 

  1 1 1 1 1 1 1( ) , ,T

k k k k k kt        qf Mq Φ q λ F q q 0   (16) 

  2 1 1 1, ,k k kt   f Φ q u 0   (17) 

With analytical handling of (12)-(14), 1 1k k, q q  and 1ka  

can be expressed in terms of the unknown 1kq . Thereby, the 

DAEs in (11) now is discretized into nonlinear algebraic 

equations (16) and (17) with respect to 1kq , 1kλ and 1ku . 

Herein, taking into account (6) and (8), the specific form of 

(17) can be derived as follows. On the one hand, if the control 
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inputs uk+1 are the driving lengths of the sliding cables during 

each time step [tk, tk+1], (17) can be expressed as 

 1 1 1( ) ( ) ( )end end i

i k ci k ci k kt t     q q q u   (18) 

Furthermore, when the actuation point moves along a certain 

coordinate axis, such as the Z-direction, (18) can be further 

simplified to  

 
1 1 1( ) ( ) ( )end end i

i k zi k zi k kt t     q q q u   (19) 

where end

ziq  denotes the displacement of the actuation point for 

the ith sliding cable. On the other hand, if the control inputs 

uk+1 are the driving speeds, it is reasonable to assume that the 

sliding cables are driven at a constant speed during each time 

step. Under this assumption, (17) can be expressed as 

 
1 1 1( ) ( ) ( )end end i

i k zi k zi k kt t       q q q u   (20) 

In this work, the driving speeds are used as control inputs 

for the controller design. However, due to the servo motors 

operate in position control mode, the corresponding actuation 

lengths, ηuk+1, are applied to the TCR.  

Then, if uk+1 is considered a known quantity, the remaining 

unknowns qk+1 and λk+1 in (16) and (17) can be solved using 

the Newton-Raphson iterative scheme. Specifically, let 

 1 1 2( ) = ,
T

T T

k
   W z f f 0   (21) 

where 
1 1 1= ( , )T T T

k k k  z q  . Taking into account (20), the above 

(21) can be rewritten as 

 1 1 1( ) = ( ) =k k k
ˆ

  W z f z Bu 0   (22) 

where 

 
1 1

1

1

( )
( ) , =

( )

k n m

k

mk

ˆ
ˆ 

 





    
    

   

f z
f z B

IG q

0
  (23) 

 

1

1 1 1 1

2

2 1 2 1

1 1

1 1

( ) ( )

( ) ( )
( ) ,

( ) ( )

end end

z k z k k

end end

z k z k k

k k

end end m

zm k zm k k

t t

t tˆ

t t

 

 

 

 

   
   

   
    
   
      

q q u

q q u
G q u

q q u

  (24) 

Using the Newton-Raphson iterative scheme, the iterative 

equation for corrections zk+1 can be derived as 

 
1

1 1

( 1) ( ) 1 ) ( )

1 1 1 1

( ) 1 ( ) ( ) 1 ( )

1 1 1 1 1

( ) ( )

( ) ( ) ( )

k

k k

j j ' ( j j

k k k k

j ' j j ' j

k k k k k
ˆ ˆ ˆ



 

 

   

 

    

  

     

z

z z

z z W z W z

z f z f z f z B u
  (25) 

where the superscript indicates the iteration index, ( 1)

1

j

k



z  is the 

variable of the current (j+1)th iteration at time tk+1, and ( )

1

j

kz  is 

the variable from the last jth iteration that is taken as the 

reference for the current computation. Herein, to accelerate 

convergence, the results at the previous time step are used as 

the initial value for the iterations at the current time step, i.e., 
(0)

1k k z z . In addition, the Jacobian matrix 
1k

'ˆ
z

f can be given as 

 
1 ( ) ( )

1 1

( )

,k

T T

'

j j

k k

ˆ ˆ
ˆ



 

   
  

   

q q q q q

z

q

Mβ Φ λ F F γ Φ
f

q q λ λΦ 0
 (26) 

where 

 
2= =ˆ ˆ,       β q q I γ q q I   (27) 

It is worth noting that the Jacobian matrix (26) may be poorly 

conditioned. Therefore, an optimal preconditioning scheme for 

DAEs reported in [48] is used to improve the condition 

number in this work. The details are not shown here again. To 

simplify the presentation, (25) can be rewritten as 

 ( 1) ( ) ( )

1 1 2 1

j j j

k k



   z u    (28) 

where  

 
1 1

( ) ( ) 1 ( ) ( ) ( ) 1 ( )

1 +1 +1 +1 2 +1( ) ( ), ( )
k k

j j ' j j j ' j

k k k k
ˆ ˆ ˆ

 

     
z z

z f z f z f z B    (29) 

So far, the unknown variable at the current iteration step ( 1)

1

j

k



z  

is obtained, which is an explicit expression with respect to the 

control input vector uk+1.  

Finally, the cost function J in (11) should be redefined. In 

the traditional IOC framework, the control cost function J is 

usually a weighted quadratic function of the errors and inputs 

at each time grid tk (0 ≤ k ≤ N). In this work, the errors contain 

the central position error and the orientation error at the end of 

the TCR. Because the end torus element approximates a rigid 

body, the end’s position y and orientation n can be described 

by the end’s three non-collinear points, or separately described 

by one center point and two rotation angles θx and θy, as 

defined in Section V(D). In this work, for the following two 

reasons, the former was used to describe the end’s position 

and orientation of the TCR. Firstly, in the PFEM framework, 

the basic unknown variables are the absolute node’s position 

coordinates q in the global coordinate system. These variables 

can intuitively and uniformly capture the information about 

robot's configuration and motion state, without the need to 

introduce additional angle variables. On the contrary, 

introducing attitude angles will increase system’s nonlinearity, 

since they should be expressed as nonlinear functions of q as 

shown in (11). As a result, the cost function J will also be 

nonlinear, rather than quadratic. It will make the problem 

more complex and even fail to solve. Secondly, when a visual 

motion capture system is adopted for measurements, the end’s 

node positions captured by the visual system can be directly 

used as the feedback data without any conversion or analysis. 

However, the end’s orientation angles θx and θy can not be 

measured directly by the visual system, which need to be 

obtained using the measured q to solve a nonlinear equation 

online. This will not only affect the accuracy of measurement, 

but also increase the computational time cost of the controller. 

Thus, the original position and orientation collaborative 

tracking control task of the TCR can be equivalently converted 

to the position tracking control for only the three vertices (P1, 

P2, P3) of the inscribed regular triangle, as shown in Fig. 2(b). 

In addition, to alleviate the oscillation problem, the increment 

of control inputs can be introduced into the cost function J. 

Then, based on the aforementioned iterative scheme and target 

transformation, the IOC algorithm for the end’s position and 

orientation tracking control of the TCR can be constructed. 

 

1

1 1 1 1

1 1 1 1

( 1) ( ) ( )

1 1 2 1

1

. ( ) ( )

k

T

k d , k k d , k

T T

k k k k
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min k max

find

ˆˆ ˆ ˆmin J

ˆ ˆ
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

   

   



 






    


      


 
  


u

y y Q y y

u R u u W u

z u

u u u

 

  (30) 

where Ĵ  is the modified cost function; ˆ Q ℝ9×9, ˆ R ℝm×m 

and ˆ W ℝm×m are the control weighting matrices;
1d , k y ℝ9×1 
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is the target vector, which contains the desired end position 

and orientation information; 1 1k k k   u u u is the increment 

of the control inputs; 1k
ˆ

 y ℝ9×1 denotes the output vector, 

i.e., the nine position coordinates of the end’s three nodes, 

which can be calculated by the following output equation 

 
( 1)

1 1 1 2 1

j

k k k
ˆˆ ˆˆ 

     y C z ξ u   (31) 

where ˆ C ℝ9×(n+m) is the output matrix;
( )j

i i
ˆ ˆξ Cξ  (i = 1, 2).  

C. Solution Based on the LCP Theory 

To find the suboptimal control inputs uk+1, the IOC shown 

in (30), actually a constrained optimization problem, will be 

transformed into an unconstrained optimization problem first, 

and further transformed into an LCP.  

For the equality constraints, it can be addressed just by 

substituting (31) into the modified cost function in (30). 

 
1 2 1 1 1 2 1 1

1 1 1 1

( ) ( )T

k d , k k d , k

T T

k k k k

ˆ ˆ ˆ ˆ ˆĴ

ˆ ˆ

   

   

      

      

u y Q u y

u R u u W u

   
  (32) 

For the inequality constraints, i.e., the input saturation, they 

can be transformed into the following equality constraints by 

introducing two relaxation factors 1 0k   and 1k   . 

 
1 1

1 1

max k k

min k k

 

 

   


  

u u

u u

0

0




  (33) 

Then, based on the parametric variational principle [49], an 

expanded cost function can be defined as 

 

1 2 1 1 1 2 1 1

1 1 1 1

1 1 1 1 1 1

( ) ( )

( ) ( )

T

c k d , k k d , k

T T

k k k k

T T

k k max k k min k k

ˆ ˆ ˆ ˆ ˆĴ

ˆ ˆ

   

   

     
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   
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   

 (34) 

where 1k  ℝm×1 and 1k  ℝm×1 are the parametric variables. 

So far, the constrained optimization problem (30) has been 

changed into the unconstrained optimization problem (34).  

Subsequently, to minimize the expanded cost function, the 

variation cĴ  with respect to 1ku should be zero. That is,  

 1 = c kĴ  u 0   (35) 

Thereby, the control inputs uk+1 can be obtained and explicitly 

expressed only on the parametric variables, given as 

 1 1 1 1 2 1 1( 2 ) ( )k k k k d , k
ˆˆ ˆ ˆ

        u H Wu H y     (36) 

where 

 
1

1 2 2 2 1 2( ) 2, 2T Tˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ/   H Q R W H H Q     (37) 

Then, substituting (36) into (33), yields  

 

2 1 1 1

2 1 1 1

1 11 1

1 11 1

( ) 2

( ) 2

d , k max k

min d , k k

k k

k k

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆ

ˆ ˆ





 

 
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 

    

     
      

      

H y u H Wu

u H y H Wu

H H

H H
0





 

 

  (38) 

Consequently, the constrained IOC problem (30) can finally 

be transformed into an LCP as follows. 

 
+ + =

T

ˆˆˆ ˆ

ˆ ˆˆ ˆ, ,




  

φ 0

0 0 0

 

   
  (39) 

where 

Algorithm 1: The IOC for Position and Orientation Control 

Input: The target position y , the target orientation n  and 

the generalized-α algorithm parameter ρ. 

Output: uk+1, qk+1, 1kq , 1kq , λk+1, (k = 1, 2, …, N) 

1: Read model information and initial values, including M, 

q0, 0q , 0q , λ0, u0 

2: Calculate equivalent targets 
dy  offline. 

3: Set weighting matrices Q̂, R̂, Ŵ, and convergence error ε. 

4: for time step k = 0 to N do 

5: 1 : ( ) (1 )k f k m k m/     a q a  

6: (0)

1kq , (0)

1kq ← By Eqs. (12) and (13) 

7: (0)

1 :k q 0 , (0)

1 :k k λ λ ,     (0) (0) (0)

1 1 1: ,
T

T T

k k k  z q λ  

8: Get current target positions 
1d ,ky  

9: Set j = 0 

10: while ‖z
k+1

(j+1)
－z

k+1

(j)
‖ / ‖z

k+1

(j+1)
‖ > ε do 

11:  Form and update the model matrices F, Φ, Φq 

12:  Update the function f̂ and its Jacobian matrix f̂
z

′
 

13:  ξ
1

(j)
, ξ

2

(j)
 ← By Eq. (29) 

14:  1k , 1k ← Solving the LCP (39) 

15:  uk+1,  zk+1

(j+1)
 ← By Eqs. (28) and (36) 

16:  ( +1) ( )

1 1:=j j

k k ̂   q q q  , ( 1) ( )

1 1:j j

k k ̂

   q q q  

17:  j := j+1 

18: end while 

19: uk, qk, kq , kq , λk ← uk+1, qk+1, 1kq , 1kq , λk+1 

20: +1 +1: +(1+ ) (1 )k k f m k/   a a q  

21: end for 

2 1 1 1

2 1 1 1

1 11 1

1 11 1

( ) 2
=

( ) 2

=

d , k max k

min d , k k

k k

k k

ˆˆ ˆ ˆ
ˆ

ˆˆ ˆ ˆ

ˆ ˆ
ˆˆ ˆ, ,

ˆ ˆ





 

 

    
 

    

     
      

      

H y u H Wu
φ

u H y H Wu

H H

H H





 
  

 

  (40) 

The LCP can be solved by many methods such as the 

interior point method [50], the non-interior continuation 

method [51], and the pivotal method [52]. In this article, the 

Lemke’s algorithm that belongs to the category of the pivotal 

methods is used to solve the standard LCP (40). Thus, 1k  

and 1k  can first be calculated by solving this LCP; then, 

substituting them into (36) and (28), the control inputs uk+1 

and the variable ( )

1

j

kz  can be obtained successively. So far, one 

iteration of the IOC controller has been completed. Thus, the 

current variables qk+1, λk+1, and uk+1 can be achieved in a few 

iterations. The convergence criterion can be defined based on 

the iterated variable zk+1 or the function W, given as 

 
( 1) ( ) ( 1) ( 1)

1 1 1 1, ( )j j j j

k k k kor   

     z z z W z   (41) 

where ε is the convergence error, and the former convergence 

criterion in (41) will be adopted in this work. 

Finally, the velocities 1kq  and the accelerations 1kq can be 
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successively obtained by substituting qk+1 and λk+1 into (12)-

(14). So far, all the unknown variables in the current time step 

[tk, tk+1] have been obtained. Then, running step by step, the 

close-loop tracking control task of the TCR can be completed 

successfully. The pseudocode of the proposed DAEs model-

based IOC framework for the position and orientation tracking 

control of the TCR has been summarized in Algorithm 1. 

Remark 2: The control inputs of the proposed IOC 

algorithm are the driving speeds or lengths of cables rather 

than driving forces. This actuation mode will be more 

conducive to hardware implementation because, for most 

commercial motors, the accurate control forces or torques at 

the output end after the reducer are usually difficult to achieve. 

Remark 3: The control input saturation, i.e., the inequality 

constraints, is transformed into an LCP. Therefore, the input 

saturation constraints can be satisfied directly just by solving 

the LCP, rather than by adjusting the control parameters, such 

as the weighting matrices, to indirectly guarantee that the 

actuation lengths or speeds are below their safety thresholds. 

D. Stability Discussion of the Proposed IOC Method  

System stability is always a crucial concern in evaluating 

the control performance of a controller. An unstable controller 

may supply inputs to the closed-loop plant to a point where the 

actuators fail or functional damage to the plant occurs. Thus, 

in this subsection, the stability of the proposed IOC method 

will be further investigated.  

In the proposed IOC framework, the controlled dynamic 

system is discretized as (22), which implies a nonlinear 

discrete dynamical system. This closed-loop control system 

(22) with inputs uk+1 is stable if the assumptions of the 

following theorem can be satisfied. 

Theorem: Assume that all eigenvalues μi of the matrix Ψz 

lie inside the unit circle in the complex plane, i.e., |μ
i
| < 1 for 

all i = 1, 2, …, n+m. Then, locally, the close-loop control 

system governed by (22) is stable under the control law of the 

proposed IOC method. Here, Ψz is the Jacobian matrix of the 

state mapping function for the discrete system (22) , given as 

 
( ) ( ) ( )

1 2 1( )j j j

k       zΨ Ψ z u z    (42) 

Proof: The stability of a nonlinear discrete dynamic system 

can be analyzed by the fixed point stability theory [53]. First, 

substituting the suboptimal control inputs uk+1 of (36) into (28), 

a map at time tk+1 for the nonlinear discrete system (22) can be 

established by a vector function Ψ(z), which maps a vector z(j) 

onto a vector z(j+1), that is, 

 ( 1) ( )( )j j z Ψ z   (43) 

where 

 

( ) ( ) ( ) ( ) ( ) ( )

1 2 1

( ) ( )

1 1 2 1 1

( ) ( ) ( ) [ ( )

( 2 ) ( ) ( ( ) )]

j j j j j j

j j

k k k d , k

ˆ

ˆˆ ˆ
  

   

    

Ψ z z z H z

Wu H z z y

 

  
  (44) 

Then, the solution z* calculated by z* = Ψ(z*) can be defined as 

a fixed point. Based on the stability theory of fixed points for 

discrete systems, the general result of the fixed point stability 

can be stated as that the convergence 
( )j *

z z can only take 

place for j → ∞ when |μ
i
|  < 1. Herein, μi denotes all the 

eigenvalues of the Jacobian matrix Ψz, evaluated at the fixed 

point z*. Hence, if the fixed points of all the control steps are 

locally stable, the controlled trajectories including the position 

and orientation will converge to a limited region around the 

desired trajectories in the whole time domain. That is to say, 

the proposed controller will be locally stable. Thus, the above 

theorem has been proven. 

V. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, simulations and experiments on the position 

and orientation tracking control of the TCR were carried out to 

validate the proposed IOC approach. Firstly, the close-loop 

control platform was briefly introduced; and the effectiveness 

of the developed numerical model was evaluated. After that, 

the experimental results of position and orientation tracking 

control on the TCR were discussed in detail. Furthermore, the 

potential applications were also demonstrated by equipping 

the TCR with a laser or a visual device. The performance of 

our approach in the above experiments is also presented in the 

supplementary videos. 

A. Experimental Setup for the Close-Loop Control 

The closed-loop control experimental setup for the TCR is 

shown in Fig. 5. In the control loop, firstly, we got the 

feedback data, i.e., the current node positions qk+1 of the TCR 

from a visual motion capture system named OptiTrack. For 

this visual system, the measurement error is less than 50 μm; 

the average sampling period including node position capture 

and feedback communication is approximately 10 ms. The 

desired position and orientation data of the TCR’s end were 

either written in a prepared file or generated from a user-

defined function. Subsequently, a personal computer was used 

as the central control system to receive the above sensing and 

desired data, and to compute the suboptimal control inputs uk+1, 

i.e., the driving speeds for the next step of all sliding cables by 

the proposed IOC approach. Also, the driving lengths can be 

obtained, which are ηuk+1. Finally, when the servo motors 

received the control signals through the Programmable Logic 

Controller (PLC) system, they would stretch or release the 

actuation lengths using transmission pulleys. After the above 

procedures, one control loop was finished, which was updated 

at 20 Hz in this work. Similarly, the entire closed-loop 

tracking control of the TCR can be completed step by step. 

The data flow diagram of the closed-loop control is 

presented in Fig. 6. Herein, it should be noted that the current 

Lagrangian multiplier λk+1 is not measured, but an approximate 

simulation result estimated by the IOC controller with taking 

the end’s position and orientation from the feedback qk+1 as the 

target. Specifically, when the current position qk+1 is measured 

and sent to the controller, the real end’s position and 

orientation from qk+1 will be taken as the targets; and the 

proposed IOC algorithm will be executed once to update the 

simulation state of the TCR to approximate the real state. At 

the same time, λk+1 can also be calculated. Then, both the 

measured qk+1 and the estimated λk+1 will be used as the 

feedback states zk+1 and substituted into the equations of the 

LCP (39) and control law (36) to calculate the driving speeds 

uk+1 for next step. In addition, it notes that all control 

computations were performed in MATLAB (R2021a) on a PC 

with an 11th Gen. Intel core i7-11700K CPU (3.60 GHz) 

processor and 16 GB RAM, running on Win10 64-bit. 

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3543292

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 23,2025 at 08:11:24 UTC from IEEE Xplore.  Restrictions apply. 



10 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

TABLE II 

POSITION COORDINATES OF THE TCR’S ENDPOINT FOR DIFFERENT CONFIGURATIONS 

Configurations 

Coordinates 
Bending Contraction S-shape 

Simulation Pc (mm) [80.66, -263.72, 464.26] [62.59, -165.22, 473.28] [47.24, 21.71, 501.87] 

Experiment p
c
′  (mm) [73.75, -261.71, 466.62] [63.14, -159.63, 471.19] [49.88, 29.85, 506.55] 

Absolute errors 
'

c cp p  (mm) 7.57 5.99 9.75 

Relative errors defined by 
'

c c / Lp p  1.26% 1.00% 1.63% 

Relative errors defined by 0

' ' '

c c c c p p p p  5.68% 6.58% 4.26% 

Note: L here is the body length of the TCR, i.e., 0.6 m; p
c0
'  = [62.33, -160.89, 380.19] is the initial experimental end’s position; and the 

driving lengths for the configurations of bending, contraction and S-shape are [90, 50, 50, 50, 50, 50] mm, [90, 70, 90, 70, 90, 70] mm 

and [60, 25, 55, 85, 55, 25] mm, respectively. 

 
Fig. 5.  Experimental setup for the closed-loop control of the 

TCR with the proposed IOC method. 

 
Fig. 6.  Data flow diagram of the closed-loop control. 

B. Model Evaluation 

Using the model parameter identification algorithm in 

section III, the comprehensive errors in the experiment caused 

by the factors such as assembly, measurement, system friction, 

and production differences can intrinsically be compensated to 

some extent. Therefore, compared to the model established by 

theoretical parameters, the identified model can simulate the 

actual motion characteristics of the TCR more accurately. The 

geometric and material parameters of each component for the 

identified model are listed in Table I. Subsequently, to 

evaluate the correctness of the identified model for the TCR 

system, certain groups of driving lengths that make the TCR 

contract, bend, or deform in an S-shape configuration are 

applied in a quasi-static way. The numerical results involving 

the end positions and body configurations are compared with 

those in the experiments. 

As shown in Fig. 7, an S-shape configuration of the TCR 

under the driving lengths l = [60, 25, 55, 85, 55, 25] mm and 

some snapshots in its deformation process are given, where 

the numerical results are all close to those by experiments. The 

average position errors of all the TCR’s nodes at the driving 

lengths (1/3)l, (2/3)l and l are 1.82 mm, 2.75 mm and 4.68 mm, 

respectively. Without loss of generality, the position errors of 

the TCR’s endpoint for different configurations involving 

bending, contraction and S-shape deformation are further 

listed in Table II. Compared with the experimentally measured 

values, the absolute errors by numerical simulation are 7.57, 

5.99, and 9.75 mm, respectively, which are 1.26%, 1% and 

1.63% of the TCR’s total length, or 5.68%, 6.58% and 4.26% 

of the corresponding end displacement. 

In addition, to evaluate the dynamic error of the proposed 

DAEs model, a set of driving lengths l = [10, 20, 150, 100, 10, 

20] mm is applied on the TCR at a constant speed. The driving 

time is 10 s. As shown in Fig. 8, the configurations of the TCR 

at 0 s, 3 s, 7 s and 10 s, and the end position trajectories are all 

coincident between the results of simulations and experiments. 

The average position error is about 7.1 mm, which is 1.10% of 

the TCR’s total length, or 1.32% of the end displacement. 

Therefore, all the above comparison results indicate that our 

numerical model of the TCR for a controller design is 

available with enough accuracy. 

C. Position Tracking Control of the Single-Segment TCR 

Following a lot of research on trajectory tracking control of 

continuum robots, the end’s position-only tracking control of 

the TCR is studied first in this subsection. 

Using the proposed DAEs model-based IOC approach, five 

groups of experiments on the end’s position tracking control 

of the TCR are conducted; the corresponding target 

trajectories are the curves like the letters “I ♥ DUT”, which 

means “I Love Dalian University of Technology”. Herein, the 

weighting matrices in (32) of the proposed IOC controller are 

set to Q̂  = 3.0104I3, Ŵ  = 3.5103I3, R̂  = 1.0I3, where  
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TABLE I 

GEOMETRIC AND MATERIAL PARAMETERS OF THE TCR 

Parameters Value Parameters Value 

Torus’s diameter 

D1 (mm) 
70 

Diameter of nylon rope 

D2 (mm) 
0.8 

Cross-sectional 

diameter of rod 

Ar (mm) 

5 

Equivalent elastic 

modulus of nylon rope 

E2 (MPa) 

2300 

Cell’s average mass 

m1 (g) 
10 

Spring’s average mass 

m2 (g) 
0.8 

Young's modulus of 

resin for 3D printing 

E1 (MPa) 

2500 

Equivalent elastic 

modulus of spring 

E3 (MPa) 

90 

Note: E1 is theoretical value; E2 and E3 are identified values; 

and other parameters are measured values. 

 
Fig. 7  Quasi-static model validation, where the driving 

lengths l = [60, 25, 55, 85, 55, 25] mm 

 
Fig. 8  Model validation of dynamics: (a-b) the configurations 

of experiment and simulation, (c) the end trajectories. 

3 I ℝ3×3 is the unit matrix. The convergence error ε is set to 

210-6. To ensure the physical safety of the servo motors, the 

input saturation constraints, i.e., the maximum driving speeds 

at each time step are limited between -50 mm/s and 50 mm/s 

(i.e., -50 mm/s ≤ uk+1 ≤ 50 mm/s). Equivalently, the driving 

lengths at each time step are limited to -2.5 ≤ ηuk+1 ≤ 2.5 mm. 

However, the total driving length, calculated by algebraically 

summing the driving lengths from the initial step to the current 

control step, is not constrained here. In addition, since the 

spatial position of the TCR’s endpoint can be controlled just 

by three active sliding cables, a single-segment TCR with 

three sliding cable actuators is designed for the position 

tracking control task.  

The control results with a T-shape target trajectory are 

presented in Fig. 9. In the experiment, to record and show the 

controlled endpoint trajectory more intuitively, a luminous 

ball is pasted at the bottom of the TCR’s end. From Fig. 9(a), 

one can find that the luminous ball moves along the desired T-

shape curve. The specific result data including the time history 

curves of the end position coordinates, the driving lengths and 

the tracking errors are given in Fig. 9(b-d).  

As shown in Fig. 9(b), the position coordinate curves of the 

TCR’s end by both simulation and experiment can follow the 

desired curves. But after partial amplification, it can still be 

seen that the control error of the experiment is larger. The 

maximum tracking error for simulation and experiment are 

approximately 2.30 mm and 8.57 mm, respectively, which are 

0.38% and 1.43% of the TCR’s total length. In addition, the 

driving lengths are further presented in Fig. 9(c). 

To avoid repetitive statements, the experimental results of 

other position tracking control for drawing the letters “I ♥ 

DUT” are presented together in Fig. 10. As shown in Fig. 

10(a1-a5), the actual trajectory curves of the TCR’s end are 

always consistent with the desired curves. The time history 

curves of the corresponding tracking errors are given in Fig. 

10(b1-b5). The maximum errors are 6.26 mm, 10.01 mm, 8.87 

mm, 7.90 mm, and 8.57 mm, respectively. 

Therefore, all the above numerical and experimental results 

illustrate that the proposed DAEs model-based IOC algorithm 

for the TCR can successfully complete the position tracking 

control tasks of "I ♥ DUT", which includes straight lines, right 

angles and arcs; and the average tracking error is less than 1 

cm, which is approximately 1.67% of the TCR’s body length. 

D. Position and Orientation Collaborative Tracking Control 

of the Two-Segment TCR  

The previous subsection has discussed the effectiveness of 

the proposed DAEs model-based IOC approach for the end’s 

position tracking control of the TCR. Subsequently, several 

experiments on the position and orientation collaborative 

tracking control will be further conducted in this subsection 

using a two-segment TCR with 6 sliding cable actuators as 

presented in Fig. 2(a). 

Without loss of generality, three control experiments on the 

position and orientation tracking control of the TCR have been 

conducted to further demonstrate the effectiveness of the 

proposed DAEs model-based IOC approach. Herein, the 

weighting matrices in (30) of the proposed IOC controller are 

set to Q̂  = 2.4104I9, Ŵ  = 3.5103I6, R̂  = 1.0I6, where

9 I ℝ9×9 and 3 I ℝ3×3 are the unit matrices. In addition, it 

notes that two cells are added to the single-segment TCR by 

modular assembly so that the body length of this two-segment 

TCR is extended to 700 mm. For the convenience of 

expression here, these three experiments are named ‘Exp_1’, 

‘Exp_2’ and ‘Exp-3’. For the Exp_1, the TCR needs to do a 

fixed-point rotary motion at 55 degree angle to the horizontal 

plane. For the Exp_2 and the Exp_3, the end of the TCR needs 

to track a curve of cone frustum and a cylindrical helix, 

respectively with the required attitude. 

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3543292

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 23,2025 at 08:11:24 UTC from IEEE Xplore.  Restrictions apply. 



12 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 
Fig. 9  The end’s position tracking control results with T-shape target trajectory: (a) the deformation snapshots, (b-d) the time 

history curves of the end position coordinates, the driving lengths, and the tracking errors for simulations and experiments. 

 
Fig. 10  The end’s position tracking control results of the target trajectories “I ♥ DUT” by experiments: (a1-a5) the controlled 

trajectories of the TCR’s endpoint position; (b) the time history curves of tracking errors. 

As shown in Figs. 11(b1-b3), the desired and actual position 

trajectories of the TCR’s end for the Exp_1, the Exp_2 and the 

Exp-3 are generally overlapping; the actual orientation vectors 

are given along the desired trajectories; and the driving lengths 

of the six active sliding cables are presented in Figs. 11(c1-c3). 

Furthermore, to show the tracking process intuitively, some 

configuration snapshots in the experiments are also provided 

in Figs. 11(a1-a3). Then, to quantify the orientation error more 

intuitively, the orientation of the end’s normal vector can be 

equivalently represented by two rotation angles (θy and θx) 

around the global coordinate axes Y and X in sequence. 

Specifically, θx and θy can be solved by the nonlinear equation 

 3 2 2 1

sin( )

cos( ) sin( ) ( ) ( )

cos( ) cos( )

y

y x

y x



 

 

 
 
       
  

r r r r 0   (45) 

where r1, r2 and r3 are the positions of the end’s three non-

collinear nodes. Here, as shown in Fig. 12, the time history 

curves of the end orientation angles θx and θy are consistent 

with the desired curves. The maximum position errors of the 

Exp_1, the Exp_2 and the Exp-3 are 12.04 mm, 10.17 mm and 

8.78 mm, respectively, which are about 1.7%, 1.5% and 1.3% 

of the TCR’s body length. The maximum absolute errors of  
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Fig. 11  Position and orientation tracking control of the TCR’s end for the experiments with different special curves (i.e., named 

Exp-1, Exp-2, and Exp-3, respectively): (a1-a3) the snapshots, (b1-b3) the controlled trajectories (i.e., a fixed point, a curve of 

cone frustum, and a cylindrical helix) and orientation (the blue arrows), (c1-c3) the driving lengths. 

 
Fig. 12  The end’s orientation angles of the position and orientation tracking controls for (a) Exp_1, (b) Exp_2 and (c) Exp_3. 

the orientation angles θx and θy are about 0.181 rad, 0.141 rad, 

and 0.087 rad, respectively. 

Furthermore, to illustrate the control stability discussed in 

sub-section IV (E), numerical simulations are carried out to 

analyze the stability of all the fixed points for the nonlinear 

discrete map Ψ(z) in different tracking task (Exp-k, where k = 

1, 2, 3) at each time step. Figure 13 shows the maximum 

absolute (Max. Abs.) eigenvalues of the Jacobian matrix Ψz, 

evaluated at each solution point, i.e., the fixed point. From Fig. 

13, it can be deduced that all the eigenvalues at each step will  
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TABLE III 

CONTROL PERFORMANCE COMPARISON BETWEEN OUR STDUSY AND THE EXISTING WORKS 

Performance 

 

Reference 

Robot structures 

(Initial length L) 

Control accuracy 
Computation time 

(software) 

Model-based or 

model-free 

Open or 

closed 

loop  

Position 

error εp 

Relative 

position error 

Orientation 

angle error 

Ref. [22] 

Magnetic-driven soft 

Microcatheters 

(L = 70 mm) 

1.3±0.48 

mm 
< 2.5% 2.8±1.0° 

6.5 ms per 

inverse step 

(Matlab) 

Inverse kinematics 

model-based 

Closed 

loop 

Ref. [23] 

Pneumatic-driven 

hyperelastic 

continuum robots 

(L = 90 mm) 

< 4.5 

mm 
< 5% 

RMSE: 

2.0o ~ 3.1o 

77 ms per inverse 

step 

(Matlab) 

Inverse statics 

(Cosserat rod 

model) model-

based 

Open 

loop 

Ref. [24] 

Pneumatic-driven 3-

DOF soft manipulator 

(L = 536 mm) 

< 13.4 

mm 
< 2.5% \ 

8.2 ms per 

inverse step 

(Matlab) 

Inverse kinematics 

model-based 

Closed 

loop 

Our work 

Cable-driven 

tensegrity continuum 

robot (TCR) 

(L = 700 mm) 

< 12.0  

mm 
< 1.7% 

RMSE: 

1.1o ~ 3.0o 

Less than 10 ms 

per sampling step 

(Matlab) 

Dynamics (DAEs) 

model-based 

Closed 

loop 

The relative position error is equal to εp/L; RMSE refers to the root mean square error; ‘\’ denotes that the orientation control is not considered. 

 
Fig. 13 Max. Abs. eigenvalues for different tracking tasks of 

Exp-1, Exp-2, and Exp-3. 

lie in a unit circle, since their Max. Abs. values are less than 

one throughout the entire time domain. Based on the stability 

theory of fixed points [53], the states controlled by the 

proposed method are stable and reliable. 

In addition, some key performance indicators of end’s 

position and orientation control for continuum robots found in 

the existing works [22]-[24] and our study has been 

summarized in Table III. As shown in Table III, the robot 

structures (material and initial length) and actuation manners 

among all works are different, but the initial length of the TCR 

is the longest. For the control accuracy, despite the maximum 

position error in our work is slightly larger than that of [22] 

and [23], the relative position error of our work is the smallest, 

and the root mean square error (RMSE) of the orientation 

angle error is also smaller than those in the existing literature. 

For the computational speed, our work can calculate at a rate 

higher than the average compared to the other methods. Thus, 

based on these comparison results, the proposed approach has 

better comprehensive control performances. 

Overall, all the above experimental results and discussions 

illustrate that the proposed DAEs model-based IOC approach 

can achieve high-precision tracking control of both the end’s 

position and orientation for complex planar or spatial target 

trajectories involving fixed points, straight lines, arcs, bending 

angles, and right angles. 

E. Virtual experiments on fast dynamic tracking control 

The closed-loop controls in Sub-sections V(C-D) were 

implemented at a lower frequency of 20 Hz. In fact, the online 

computational time of the proposed IOC approach is only the 

time for solving a small-scale (12-dimensional) LCP problem, 

which is highly efficient. The calculation time of the controller 

for each sampling period is under 10 ms, enabling a potential 

control frequency of up to 100 Hz. However, due to the 

constraints posed by the current experimental hardware, such 

as much time costs associated with measurement, motor drive, 

and data communication, the control frequency has to be 

limited, and the TCR should move at relatively low speeds. To 

further demonstrate the effectiveness of the proposed method 

for fast dynamic tracking control, additional virtual closed-

loop control experiments are conducted in this subsection. 

In the virtual experiments, the closed-loop interaction 

between the virtual sensor and the IOC controller is presented 

in Fig. 14. The validated dynamic DAEs model (Model A) is 

used as a virtual sensor for state feedback. The close-loop 

controller is established based on another model (Model B), 

which can be a kinematic, static, or dynamic system. To 

account for the inevitable motion errors of the TCR between 

virtual simulation and physical prototype, certain material 

parameters in Model B are set differently from those in Model 

A. Specifically, in Model B, the elastic modulus of the 

classical cables is reduced by 30%, and the density of all 

components is increased by 20%. 

Then, as shown in Fig. 15, a fixed-point orientation tracking 

control problem is taken as an example to illustrate the 

effectiveness of the proposed method for fast dynamic 

tracking. Here, a comparison between a static model-based 

controller and a dynamic model-based controller at different 

motion rates are provided in Figs. 16(a-c), where the upper 

half are the time history curves of the end’s position in X-

direction from fast to slow rate, and the lower half are that of 

the end’s orientation angle θy. 

For the static model-based controller, it notes that the static 

model here refers to a model where the first dynamic equation 

in the DAEs of (9) is degraded to a static form. As shown in 

Figs. 16(a-b), when the TCR moves at a fast speed (the total 

time of 10 s) or at a medium speed (total time of 45 s), both 

the end’s position and orientation angle will quickly deviate 

from the desired trajectories, ultimately leading to divergence. 
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Fig. 14.  The framework of the virtual control experiment. 

 
Fig. 15  The fixed-point orientation tracking control problem 

at different motion rates. 

 
Fig. 16.  Control result comparisons between the static model-

based controller and the dynamic model-based controller at 

different tracking rates: (a-c) the tracking times are 10 s (fast), 

45 s (medium) and 90 s (slow), respectively. 

As shown in Fig. 16(c), the tracking task can only be 

completed when the total motion time is extended to 90 s. 

However, even then, the control error remains significant, with 

maximum absolute errors of 9.43 mm for the end position in 

X-direction and 25.29o for the end orientation angle θy. 

For the dynamic model-based controller, as shown in Fig. 

16, it can effectively track the desired end’s position and 

orientation at different rates, but the control accuracy will 

decrease as the tracking rate increases due to the heightened 

dynamic effect of the TCR. Specifically, the root mean square 

errors (RMSE) of the end position in X-direction for the 

tracking times 10 s, 45 s and 90 s are 2.56 mm, 0.16 mm, and 

0.07 mm, respectively; and their maximum absolute errors are 

10.15 mm, 1.0 mm and 0.47 mm, respectively. The RMSE of 

the end orientation angle θy are 2.98o, 1.14o and 0.49o, 

respectively; and their maximum absolute errors are 5.84o, 

4.32o, 2.158o and 2.450, respectively. 

 
Fig. 17  Scenario 1, a laser passes through a slender pipeline: 

(a) the laser device, (b) position and attitude determination of 

the slender pipeline, (c) the Laser spot. 

All the above results illustrate that the proposed DAEs-

model based IOC approach is effective not only for the end’s 

position and orientation tracking control of the TCR in slow-

motion scenarios but also for fast dynamic tracking control. 

F. Potential Applications in Industrial Inspection 

When equipped with certain devices, the TCR can be used 

as an autonomous auxiliary tool for industrial in-situ detection 

in narrow environments due to its dexterity in achieving both 

orientation and position control. To demonstrate this potential 

application, a laser or a camera was installed at the end, and 

two scenarios were designed. The experimental results are 

discussed as follows. 

Scenario 1: as shown in Fig. 17, a laser was installed at the 

TCR’s end; the control task is to make the laser beam pass 

through a slender pipeline. First, the position of the pipeline’s 

left endpoint Pl, i.e., the expected laser incident point, and the 

orientation of the pipeline’s central axis nl, i.e., the expected 

laser incidence direction can both be calculated using the 

positions of the six symmetrically distributed markers on the 

pipeline shown in Fig. 17(b), which were captured by the 

visual motion capture system OptiTrack. Then, the direction 

vector nl and the point that 5 cm away from Pl along the 

pipeline axis were chosen as the target point and the target 

orientation to be tracked, respectively. During the experiments, 

both the trajectory and orientation between the start point and 

the target point were discretized with a proper step length. 

Subsequently, the proposed IOC method was used to solve the 

tracking control problem based on the above defined trajectory 

and orientation. Finally, the laser would project through the 

pipeline onto the pre-pasted surface at the right end shown in 

Fig. 17(c). The control results are presented in Figs. 18 and 19. 

Figure 18 shows some snapshots in the tracking process. 

When the TCR’s end reaches the first target point P1, the laser  
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Fig. 18  Experimental snapshots in the tracking process: (a) the initial state, (b) configuration and laser point at the first target P1, 

(c) moving the pipeline to get a new target position and orientation, (d) configuration and laser point at the second target P2. 

 
Fig. 19  The control results of scenario 1: (a) the position and 

orientation, (b) the driving lengths. 

 
Fig. 20  Scenario 2, internal environment detection of a closed 

box with one or more narrow inlets. 

will pass through the pipeline placed horizontally, and project 

onto the surface at the right end. Afterward, the attitude of the 

pipeline is changed to be inclined. And the TCR continues to 

perform tracking control tasks with this new target position 

and orientation. When it reaches the second target point P2, 

the laser can also pass through the inclined pipeline. The 

desired and actual position and orientation at the target points 

are presented in Fig. 19(a). The position errors at the target 

point P1 and P2 are 8.7 mm and 13.9 mm, respectively, which 

are about 1.24% and 1.99% of the two-segment TCR’s body 

length. And the absolute errors of the orientation angles θx and 

θy are about 0.161 rad and 0.038 rad at point P1, and 0.024 rad 

and 0.033 rad at point P2. In addition, the driving lengths are 

presented in Fig. 19(b). 

Scenario 2: as shown in Fig. 20, by replacing the laser in 

scenario 1, a camera was installed at the TCR’s end; the 

control task is to detect the internal environment of a closed 

box with one or more narrow inlets to find three given target 

objects. First, the position and attitude of the closed box 

should be calculated using the positions of the symmetrically 

distributed markers Pi (i = 1, 2, 3, 4) around the left hole of the 

box. Then, a target trajectory needs to be created. Finally, one 

can enable the end camera and start the tracking control task. 

Herein, it should be clarified that the goal of this scenario is 

not to recognize objects, but to show how orientation control 

affects detection performance. 

For the above control task, to demonstrate the merits of the 

proposed controller with the TCR’s end orientation control, 

two detection strategies with and without orientation control 

will be compared in this scenario. As presented in Fig. 21(a), 

the main idea of Strategy 1 is to directly try multiple times 

through different inlet holes without orientation control; the 

trajectory is designed as a polyline. However, as shown in Fig. 

21(b), Strategy 2 tries to complete the detection task by 

scanning the internal environment through only one nearby 

inlet hole with orientation control. 
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Fig. 22  Experimental snapshots for Strategy 1 from the main view, the top view and the camera at the TCR’s end. 

 
Fig. 21 The detection strategies without (Strategy 1) or with 

(Strategy 2) end’s orientation control in Scenario 2. 

Here, it is noted that the box only serves as a confined space; 

its transparency does not affect the validation of the above 

proposal since the TCR does not enter the interior of the box. 

When the TCR needs to enter the box for inspection, it may be 

impractical to use a visual motion capture system that is not 

integrated within the robot for state feedback. For this 

situation, a sensor such as fiber Bragg grating (FBG) could 

potentially be integrated onto the TCR for state feedback.  

Before discussing the control results, it is worth noting that 

for Strategy 1, despite there is no need to consider the end’s 

orientation in its controller design, obviously, multiple inlet 

holes of different directions are required. This requirement 

may not be met for some industrial equipment to be detected. 

Even worse, from some experiments by Strategy 1, we found 

that the end’s attitude at the same target point was related to 

its initial attitudes and the tracked paths. This correlation will 

make the controller heavily dependent on manual prediction. 

Then, the control results using the above two strategies have 

been compared as follows. 

For Strategy 1, Fig. 22 presented some snapshots from the 

main view, the top view and the camera at the end 

synchronously. From Fig. 22, it can be seen that the TCR can 

successively reach the first two inlet holes on the left and the 

back of the closed box along the desired polyline. When the 

TCR reached the 2nd hole at time 133.1 s, a target object, i.e., 

the mouse was detected. However, before reaching the 3rd 

inlet hole, the TCR collided with the edge of the closed box at 

time 180 s, so the tracking control task was terminated here. In 

addition, the end’s position trajectory and the time history 

curves of the driving lengths were given in Fig. 23. 

For Strategy 2, the control process can be divided into four 

stages. In the 1st stage, as shown in Fig. 24(a), the TCR’s end 

reached the inlet hole along a straight line. Synchronously, the 

end’s orientation gradually changed from the initial state to 

perpendicular to the inlet hole. Then, the TCR began to scan 

he internal environment of the box at the target point. In the 

2nd stage, the TCR continued to adjust its end’s orientation to 

2nd stage, the TCR continued to adjust its end’s orientation to 

an angle of π/6 with the X-axis and rotated once around it in 

the 3rd stage. Afterward, returned to perpendicular to the inlet 

hole in the 4th stage. Figs. 24(b-d) show the snapshots of the 

moments when the target objects were detected. The camera’s 

orientations of the TCR for these snapshots were also given in 

Fig. 24(e). The tracking control results including the end’s 

position and orientation were shown in Fig. 25. From Fig. 25, 

it can be seen that the actual end’s position in Z-direction and 

the normal vector of the four stages were both consistent with  
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Fig. 24  Experimental snapshots for Strategy 2: (a) the snapshot at the time of starting the scan, (b-d) the snapshots at the time of 

detecting the target objects, (e) the camera’s orientations of the TCR in these snapshots, which were opposite to that of the end. 

 
Fig. 23  The control results of Strategy 1: (a) the tracking 

trajectories, (b) the driving lengths. 

 
Fig. 25  The control results of Strategy 2: (a) the position 

coordinate in the Z-direction and its relative errors, (b) the 

end’s normal vector coordinates. 

TABLE IV 

LIST OF THE DETECTED OBJECTS 

Target 

           Objects 

Has it 

been 

detected? 

(Yes or No) 
 

Key 
 

Mouse 
 

Handicraft 

Strategy 1 No Yes No 

Strategy 2 Yes Yes Yes 

the desired ones. In addition, the detected objects by the above 

two strategies are listed in Table IV. When using the position 

and orientation collaborative tracking control strategy, i.e., 

Strategy 2, all the three target objects can be detected, and the 

detection time was about 84 s. But only one target object was 

detected by Strategy 1 without orientation control; and the 

detection time was even longer, which was 183 s for this task. 

In sum, all the above experimental results and discussions 

illustrate that the proposed DAEs model-based IOC approach 

is effective, practical and easy to implement for the position 

and orientation tracking control of the cable-driven tensegrity 

continuum robots. It enhances the control performance of the 

traditional position-only tracking controllers for the continuum 

robots and meets the demands of more application scenarios. 

In addition, the proposed controller is more compatible with 

the working modes of most current commercial motors by 

combining a so-called geometric constraint driven technology, 

where the speeds or lengths of the sliding cables serve as the 

control inputs rather than their forces or torques. 

VI. CONCLUSION 

In this article, a DAEs model-based IOC approach was 

proposed to solve the position and orientation tracking control 

problem of a tensegrity continuum robot with sliding cable 

actuators. First, combining the geometrically nonlinear PFEM 

and the multibody dynamics theory, a control-oriented model 

of the TCR described by DAEs was established, where the 

absolute nodes’ positions and the sliding cables’ lengths (or 

speeds) serve as the basic state variables and the control 

inputs, respectively. So that the feedback of the current 

configuration of the TCR can be measured directly by visual 

equipment, without any data conversion or analysis; and the 

control inputs are compatible with the operating modes of 

most commercial motors. Afterward, the position and 

orientation cooperative tracking control problem was 

described as a nonlinear optimal control problem with DAEs 

and input saturation constraints. Then, to overcome the 
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difficulties of solving this problem, it was transformed into a 

sequence of suboptimal IOC problems at every discrete time 

slot. Finally, the control inputs can be achieved by solving 

these IOC problems. The numerical and experimental findings 

demonstrated that the proposed DAEs model-based IOC 

method is effective, and can significantly improve the control 

performance of the position-only tracking controllers and meet 

the requirements of more application scenarios. In addition, it 

is worth mentioning that the proposed IOC tracking control 

framework is not only applicable to the TCR in this work, but 

can also be extended to other cable-driven continuum robot 

systems described by the DAEs model. 
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