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A B S T R A C T

For the dielectric elastomer actuators (DEAs) with high-frequency excitations and large de
formations, it is full of challenges to accurately describe their continuum dynamic responses due 
to the viscoelastic effect and geometric nonlinearity. The absolute nodal coordinate formulation 
(ANCF) possesses notable advantages in precisely depicting the rigid-body motions and large 
deformations of the DEAs. In this paper, a novel ANCF hyper-viscoelastic solid element for 
arbitrary shaped DEAs is developed, where the accuracy of predicting viscoelasticity is improved 
by adding more viscoelastic units to a two-part constitutive viscoelastic model. The volumetric 
locking problem of incompressible material is effectively avoided by using high-order interpo
lation functions. Firstly, the homogeneous deformations of a dielectric elastomer block are pre
dicted with the proposed model and verified with the analytical solutions. Secondly, the proposed 
model is proved to be applicable to the DEAs with complex shapes by studying the dynamic 
response of a three-dimensional torsional DEA. Subsequently, the effectiveness of the proposed 
model under a wide frequency range is demonstrated through the experiments and dynamic 
simulations of a rolled DEA. The numerical results show that the hysteresis effect and creep of the 
rolled DEA are predicted more precisely with the proposed model than those obtained with only 
one viscoelastic unit. Finally, the effect of changing geometric parameters and applying different 
loading voltages on the actuation properties of a rolled DEA are further analyzed. The proposed 
viscoelastic dynamic model can be implemented effectively in the design of a complex DEA with 
fast responsiveness and high deformability.

1. Introduction

Dielectric elastomer (DE) material is an electroactive polymer material that was gradually developed in the 1990s. It is charac
terized by its large deformation that the applied voltage can make it expand horizontally and shrink vertically at the same time, as 
illustrated in Fig. 1. Because of its good deformability stimulated by electric energy, DE becomes a heated research topic among re
searchers and has been widely used in the fields like biomedicine, intelligent robots and wearable devices [1–3]. It is also found that DE 
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exhibits many other notable features, such as large energy densities, quick response to voltages and obvious viscoelasticity. These 
characteristics make DE particularly attractive for soft actuator applications especially in harsh environments. Therefore, it is of great 
significance to conduct further studies on DE’s electrodeformation principle and designs, which can advance the development and 
application of DEAs.

In order to improve the response speed and deformation of dielectric elastomer actuator (DEA) under electrical load, researchers 
have designed many different configurations of DEAs, such as the stacked DEA [4–6], the foldable DEA [7,8], the spiral DEA [9] and 
the annular DEA [10,11]. The rolled DEA is made by bending the dielectric elastomer membrane into a tubular shape, as seen in Fig. 2, 
usually supported by a compressed spring inside [12–14]. Without outer frame and any spring core inside, the rolled DEA will have a 
longer service life and smaller unidirectional actuation elongation [15,16]. The centrally symmetrical configuration of the rolled DEA 
can generate more mechanical energy by converting its biaxial stretching into a large uniaxial deformation subject to the applied 
voltage.

Associated with nonlinear electrostatics, hyper-viscoelastic membrane behavior and geometric nonlinearities, it is challenging to 
precisely model the DEAs and performing numerical simulations. In the previous researches, the static characteristics of the DEAs were 
fully studied [21]. Recently, some efficient dynamic models have been developed to model the DEAs using few degrees of freedom 
[17–19], such as the physical model for the dielectric electroactive polymer (DEAP) actuator system coupling both electrical and 
mechanical dynamics [20] and the nonlinear electromechanical model for the PolyPower DEA based on an electric circuit model [22]. 
In these researches, the stretches in the main directions are usually used to describe the deformation of the DEAs with typical con
figurations such as spherical [40], rectangular [41], tubular [42], and circular [43] shapes. To obtain more details of 3D deformed 
configuration and achieve more accurate results, the nonlinear finite element method is further developed for the DEAs [23–25]. 
Compared with the traditional finite element method, the absolute nodal coordinate formulation (ANCF) possesses notable advantages 
in precisely depicting the rigid-body motions and large deformations of flexible body. Recently, several researches of the DEAs based 
on ANCF have been carried out [26,27], where the viscoelastic effects are hardly addressed.

As a kind of polymer material, the DE material has significant viscoelasticity effect such as viscoelastic creep under constant voltage 
signal [28] and hysteresis subject to cyclic loading voltages [29,30]. In the previous research, there is a simplified way to describe the 
viscoelasticity of DEAs by making use of an experiment-based identification, without explicit use of a viscoelastic model [31]. 
Viscoelastic theories based on the Bergstrom-Boyce model has been generalized to investigate both anisotropy and viscoelasticity of DE 
membrane [32–34]. Based on the rheological model, several analytical models accounting viscoelastic effects have been presented to 
describe the unconstrained configurations of DEAs involving homogeneous deformations [35–37]. By adding more parallel 

Fig. 1. The voltage-induced deformation of a dielectric elastomer membrane.

Fig. 2. The rolling process of a rolled DEA. (i-ii) Rolling the DE membrane into a tubular shape. (iii) Glueing flat caps to the ends and applying 
voltage in the radial (thickness) direction.
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viscoelastic units to the conventional model, the viscoelastic effects of DEAs can be predicted more accurately [39]. Furthermore, a 
computationally efficient numerical framework is also developed to capture the viscoelastic behaviors and inhomogeneous de
formations of the DEAs with complex geometries [38].

In order to precisely predict the viscoelastic behaviors of the DEAs with fast responsiveness and inhomogeneous deformations, it is 
crucial to develop a general visco-hyperelastic dynamic model with multiple viscoelastic units, which is applicable to DEAs in arbitrary 
shapes.

In the following section, a viscoelastic dynamic model with multiple viscoelastic units for the arbitrary shaped DEAs is established 
first based on the ANCF method, and then dynamic equations of the whole system are derived according to the Hamilton’s principle. 
Section 3 describes the procedure of solving the dynamic equations by applying the generalized α method. In Section 4, the homo
geneous deformations of a dielectric elastomer block are simulated and verified with the analytical solutions. In Section 5, the pro
posed model is proved to be applicable to the DEAs with complex shapes by investigating the dynamic performance of a three- 
dimensional torsional DEA. In Section 6, the effectiveness of the developed model is validated experimentally by performing dy
namic simulations of a rolled DEA subject to cyclic loading voltage. Subsequently, the influence of different geometric parameters and 
loading histories on the actuation properties of the rolled DEA are further analyzed. Finally, conclusions of the investigation will be 
summarized.

2. Dynamic modeling of the DEA

2.1. ANCF solid element of DEA

For flexible systems with large deformation, geometric nonlinearity needs to be considered in the modeling process. Currently, 
dynamic modeling methods for large deformation problems mainly include three types: absolute nodal coordinate formulation 
(ANCF), corotational method and geometrically exact formulation. In this investigation, absolute nodal coordinate formulation 
(ANCF) is used for dynamic modeling of the DEA [26], in which the absolute coordinates of the nodes in the inertial coordinate system 
and their gradients are used as generalized coordinates to describe the configuration of the flexible system.

As seen in Fig. 3, O-XYZ is the inertial coordinate system. For a solid element with 8 nodes, the reference configuration is defined as 
Ω0, and the base vectors of the reference material coordinate system are ac(c = 1,2,3). The current configuration at time t is defined as 
Ω, and the base vectors of the current material coordinate system are Ac(c = 1,2,3). To evolve the system dynamic equations of the 
DEAs in arbitrary shapes, the absolute nodal position vectors and their gradients with respect to the material coordinates are denoted 
as generalized coordinates.

In the current configuration, the absolute position vector of an arbitrary material point is expressed as 

r = Sqe (1) 

S = [S1 S2 ⋯ S8 ] (2) 

Si = [ si1 si2 si3 si4 ]I (3) 

where S is the shape function matrix, sil (l = 1,2,3,4) are provided in Appendix 1 and the vector of element coordinates qe is given by 

qe = [ (q1
e )

T
(q2

e )
T ⋯ (q8

e )
T
]
T (4) 

To alleviate the volumetric locking problem of incompressible material, gradient coordinates are included in each node of the 
element, the coordinate vector of each node takes the form 

qi
e = [ (ri)

T
(ri

ξ)
T

(ri
η)

T
(ri

ζ)
T
]
T

(5) 

Fig. 3. Configuration of the DE solid element.
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where ri is the absolute position vector of node i (i = 1, 2, ⋯, 8) and ri
j is the partial derivatives of ri with respect to the material 

coordinate j (j = ξ,η,ζ).
The deformation gradient with respect to the material coordinates is defined as 

Fc = [ rξ rη rζ ] = [Sξqe Sηqe Sζqe ], (6) 

where rξ = ∂r
/

∂ξ, rη = ∂r
/

∂η, rζ = ∂r
/

∂ζ, Sξ = ∂S
/

∂ξ, Sη = ∂S
/

∂η, Sζ = ∂S
/

∂ζ.

In the reference configuration, the absolute position vector is expressed as r0 = Sqe0 = [ x y z ]T and the deformation gradient 
with respect to r0 is given by 

F =
[
rx ry rz

]
=
[
Sxqe Syqe Szqe

]
, (7) 

where rx = ∂r
/

∂x, ry = ∂r
/

∂y, rz = ∂r
/

∂z, Sx = ∂S
/

∂x, Sy = ∂S
/

∂y, Sz = ∂S
/

∂z.

The transformation between F and Fc is realized by 

F = Fc

(
∂r0

∂ρ

)− 1

(8) 

where the current material coordinate vector is defined as ρ = [ ξ η ζ ]T and 

∂r0

∂ρ = [ r0ξ r0η r0ζ ] = [ Sξqe0 Sηqe0 Sζqe0 ] (9) 

(
∂r0

∂ρ

)− 1

= [Sξqe0 Sηqe0 Sζqe0 ]
− 1

=

⎡

⎣
ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

⎤

⎦ (10) 

Based on Eq. (6)-(10), Sx, Sy, Sz are further evolved 

Sx = Sξξx + Sηηx + Sζζx,

Sy = Sξξy + Sηηy + Sζζy,

Sz = Sξξz + Sηηz + Sζζz.

(11) 

Denoting the electric potential and its gradients of the material point as φ, and its gradients as φx = ∂φ/∂x, φy = ∂φ/∂y, φz =

∂φ/∂z, the nominal electric field E is given as 

E = [φx φy φz ]
T (12) 

2.2. Viscoelastic model with multiple spring-dashpot units

As a polymer material, the DE materials have significant viscoelasticity. Commonly, the viscoelasticity of DEAs is represented with 
a two-part constitutive model with a single spring element in parallel to one spring-dashpot unit. In this paper, more parallel visco
elastic units are added to the two-part constitutive model, which can help in predicting the viscoelastic effects of DEAs more accu
rately. As shown in Fig. 4, a single spring element is used to model the elastic equilibrium response, which is in parallel to multiple 
spring-dashpot units representing the viscous responses of DEAs.

Fig. 4. The viscoelastic model with a single spring element in parallel to multiple spring-dashpot units.

L. Zhang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 241 (2025) 113405 

4 



In this paper, the equilibrium free energy function U∞ and the non-equilibrium free energy function Ue
s for viscoelastic unit s are 

both characterized by the Gent model, which can precisely describe the stiffening phenomenon of DEAs in large deformations. The 
equilibrium shear modulus, bulk modulus and limiting stretch parameter are presented by μ∞, K∞, and I∞

lim, respectively, and the non- 
equilibrium shear modulus, bulk modulus and limiting stretch parameter of the viscoelastic unit s are presented by μe

s , Ke
s , and (Ilim)e

s , 
respectively. Viscosity parameter of viscoelastic unit s is denoted as ηe

s . For each viscoelastic unit, ηe, μe, Ke and Ie
lim are used to facilitate 

the derivation of the following formulations.
Defining Fe and Fv as the elastic and viscous components of the deformation gradient, respectively, the total deformation gradient is 

composed of two parts as F = FeFv. Therefore, elastic component of the deformation gradient can be written in the form of Fe =

F(Fv)
− 1. Denoting the viscous right Cauchy strain tensor as 

Cv = (Fv)
TFv (13) 

the elastic component of the right Cauchy strain tensor is obtained as 

Ce = (Fe)
TFe = (Fv)

− TC(Fv)
− 1 (14) 

where the right Cauchy-Green tensor C is expressed as C = FTF. Considering Eq. (7) and Eq. (14), the traces of C and Ce can also be 
obtained as 

I1 = tr(C) = qT
e (S

T
xSx + ST

y Sy + ST
z Sz)qe (15) 

Ie
1 = tr(Ce) = qT

e Bqe (16) 

where 

B = Cv− 1
11 ST

xSx + Cv− 1
12 ST

xSy + Cv− 1
13 ST

xSz

+ Cv− 1
21 ST

y Sx + Cv− 1
22 ST

y Sy + Cv− 1
23 ST

y Sz

+ Cv− 1
31 ST

z Sx + Cv− 1
32 ST

z Sy + Cv− 1
33 ST

z Sz.

(17) 

in which Cv− 1
IJ is an element of (Cv)

− 1, and the derivation of B is derived in Appendix 2 in detail.
Based on Eq. (7), the determinant of the deformation gradient is derived as J = det(F). Employing the determinants of the elastic as 

Je and viscous components of the deformation gradient as Jv = det(Fv) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det(Cv)

√
, the determinant of the elastic component of the 

deformation gradient is derived as Je = J/Jv.
To capture the particular strain-stiffening effect of DEAs, the incompressible Gent model of hyperelasticity is adopted to derive the 

equilibrium free energy 

U∞
e =

∫

V

[

−
1
2

μ∞I∞
limln

(

1 −
J− 2/3I1 − 3

I∞
lim

)]

dV

+

∫

V

[
1
2
K∞(J − 1)2

−
1
2

εJETC− 1E
]

dV
(18) 

and the non-equilibrium free energy of each viscoelastic unit is written as 

Ue
e =

∫

V

[

−
1
2

μeIe
limln

(

1 −
(Je)

− 2/3Ie
1 − 3

Ie
lim

)]

dV

+

∫

V

[
1
2
Ke(Je − 1)2

]

dV

(19) 

where the limiting stretch parameter I∞
lim and Ie

lim reflect the limiting chain extensibility of rubber networks of the DEs, which can 
reduce the Gent model to the neo-Hookean model in the limit of I∞

lim→∞ [45].
Hence, the free energy of element e can be derived as 

Ue = U∞
e +

∑nv

s=1
(Ue

e)s (20) 

where nv is the total number of viscoelastic units.

2.3. Formulation of nonlinear dynamic equations

According to Hamilton’s principle, the variational equation of the system is obtained as 

δWiner − δU+ δWext = 0 (21) 
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where the virtual work of inertial force and the external force of the system are expressed as 

δWiner = − δqTMq̈, δWext = δqTQext (22) 

and the variation the free energy of the system is given by 

δU = δqTQint (23) 

where Qint and Qext are the generalized internal force vector and the generalized external force vector, respectively.
Defining a conversion matrix as Be, the relationships between the variables of element e (e = 1 ∼ ne) and corresponding variables 

of the whole system are listed in Table 1.
For element e, according to the rheological model in Fig. 4, the element internal force vector is denoted as 

Qint
e = Q∞

e +
∑nv

s=1
(Qe

e) s (24) 

where Q∞
e and (Qe

e) s are derived from the equilibrium free energy and the non-equilibrium free energy, respectively.
For each elastic and viscoelastic unit, the expressions of Q∞

e and Qe
e are given by 

Q∞
e =

∫

V

1
2

μ∞
(

1 −
J− 2/3I1 − 3

I∞
lim

)− 1[

J− 2/3
(

∂I1

∂qe

)T
]

dV

−

∫

V

1
2

μ∞
(

1 −
J− 2/3I1 − 3

I∞
lim

)− 1[2
3
J− 5/3

(
∂J
∂qe

)T

I1

]

dV

+

∫

V
K∞(J − 1)

(
∂J
∂qe

)T

dV −

∫

V

ε
2
(ETC− 1E)

(
∂J
∂qe

)T

dV

−

∫

V

ε
2

J
∑

I

∑

J
EIEJ

(
∂C− 1

IJ
∂qe

)T

dV,

(25) 

Qe
e =

∫

V

μe

2

⎛

⎜
⎜
⎝1 −

(Je)
−

2
3Ie

1 − 3
Ie
lim

⎞

⎟
⎟
⎠

− 1
⎡

⎣(Je)
−

2
3

(
∂Ie

1
∂qe

)T
⎤

⎦dV

−

∫

V

μe

2

⎛

⎜
⎜
⎝1 −

(Je)
−

2
3Ie

1 − 3
Ie
lim

⎞

⎟
⎟
⎠

− 1⎡

⎢
⎢
⎣

2(Je)
−

5
3

3Jv

(
∂J
∂qe

)T

Ie
1

⎤

⎥
⎥
⎦dV

+

∫

V
Ke(Je − 1)

1
Jv

(
∂Je

∂qe

)T

dV,

(26) 

and the derivatives of Q∞
e and Qe

e with respect to qe are provided in Appendix 3.
Therefore, the variational dynamic equations of the flexible system can be obtained as 

δqT(Mq̈ + Q∞ + Qe − Qext) = 0 (27) 

Table 1 
Relationships between the variables of element e and the variables of the system.

Element e System Relationship

Generalized coordinates qe q qe = Beq
Mass matrix Me M M =

∑ne
e=1

BT
e MeBe

Generalized external force Qext
e Qext Qext =

∑ne
e=1

BT
e Qext

e

Generalized internal force Qint
e Qint Qint =

∑ne
e=1

BT
e Qint

e

Free energy Ue U U =
∑ne

e=1
Ue
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3. Computational strategy

3.1. Dynamic equations

In this study, the electric field is applied by the preset charge loading, which means that the electric potential is known in advance. 
For constrained dynamic system, the constraint equations are presented as Φ = 0 and Φq = ∂Φ/∂q is the Jacobian matrix. Introducing 
Lagrange multipliers λ to the constrained system, the dynamic equations are obtained 

Φ =

[
Mq̈ + Qd + Q∞ + Qe − Qext + ΦT

qλ
Φ

]

= 0 (28) 

where an additional generalized structural damping force Qd = Cdq̇ is considered to reduce numerical oscillation of dynamic results. 
Taking the structural damping coefficient as cd, the relationship between structural damping matrix and the mass matrix is expressed 
as Cd = cdM.

To solve dynamic equations with the implicit time-integration algorithm, the Jacobian matrix of the system is needed 

J =

⎡

⎢
⎣

M
∂q̈
∂q

+ Cd∂q̇
∂q

+ J∞ + Je ΦT
q

Φq 0

⎤

⎥
⎦ (29) 

J∞ =
∑ne

e=1
BT

e J∞
e Be, Je =

∑ne

e=1

∑

s
BT

e

(
Je

e

)

sBe (30) 

where J∞ and Je are separately derived in Appendix 3.

3.2. Computational procedure

In this investigation, the dynamic results are obtained by solving the dynamic equations with the generalized-α method. To 
effectively filter out the high-frequency components of dynamic responses, the numerical damping of the generalized α method is 
considered in the computational procedure, which is controlled by the spectral radius ρ∞ = 0.8. The parameters used in the gener
alized α method can be expressed by ρ∞ as 

αm =
2ρ∞ − 1
ρ∞ + 1

, αf =
ρ∞

ρ∞ + 1
(31) 

γ = 0.5+αf − αm, β = 0.25(γ + 0.5)2 (32) 

At the initial time, the time increment and the element coordinates are set as Δt0 = 10− 4s and q0
e = [ (q01

e )
T

(q02
e )

T ⋯ (q08
e )

T ]
T, 

respectively, where the initial nodal coordinates are given by q0i
e = [ (r0i)

T
(r0i

ξ )
T

(r0i
η )

T
(r0i

ζ )
T
]
T
(i = 1,2,⋯,8). The maximum and 

minimum value of the time increment Δtn are set as (Δtn)max = 10− 4s and (Δtn)min = 10− 6s, respectively.
Let n denote the number of time steps and i denote the number of convergence cycles, the converged value qn+1, λn+1 and 

(Cv
s )

n+1(s = 1,2,⋯,nv) at time tn (tn⩽ttotal) are calculated with the following steps, where ttotal is the total duration.
(1) Initialization 

an+1
0 = (αf q̈n

− αman)/(1 − αm),

qn+1
0 = qn + Δtnq̇n

+ Δt2
n (0.5 − β)an + Δt2

n βan+1
0 ,

q̇n+1
0 = q̇n

+ Δtn(1 − γ)an + Δtnγan+1
0 ,

q̈n+1
0 = 0, λn+1

0 = 0, (Cv
s )

n+1
0 = I,

(33) 

where a is the acceleration vector and I is a three-dimensional unit matrix.
(2) Newton-Raphson iteration 

Jn+1
i

[
Δqn+1

i

Δλn+1
i

]

= − Φn+1
i (34) 

where the increment of qn+1
i and λn+1

i are both obtained as 
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qn+1
i = qn+1

i− 1 + Δqn+1
i , q̇n+1

i = q̇n+1
i− 1 + γʹΔqn+1

i ,

q̈n+1
i = q̈n+1

i− 1 + βʹΔqn+1
i , λn+1

i = λn+1
i− 1 + Δλn+1

i ,

βʹ =
1 − αm

(1 − αf )βΔt2
n
, γʹ =

γ
βΔtn

.

(35) 

The deformation gradient Fn+1
i and the right Cauchy-Green tensor Cn+1

i are derived as 

Fn+1
i =

[
Sx Sy Sz

]
(qe)

n+1
i , Cn+1

i =
(
Fn+1

i
)TFn+1

i (36) 

Subsequently, the viscous right Cauchy strain tensor Cv
s of viscoelastic unit s is evolved by integrating the evolution equation using 

the Backward Euler method [38] 

[(Cv
s )MJ]

n+1
i = Δt

[
2
ηe

s

(

CMKSe
KP −

1
3
CINSe

NIδMP

)

(Cv
s )PJ

]n+1

i

+ [(Cv
s )MJ]

n+1
i− 1

(37) 

Fig. 5. Computational procedure of the generalized α method.
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[(Se
s)IJ]

n+1
i = μeJe − 2/3[(Re

s)
− 1
IJ ]

n+1
i [(Cv

s )
− 1
IJ ]

n+1
i− 1

−
1
3

μeJe − 2/3[(Re
s)

− 1
IJ ]

n+1
i (CQP[(Cv

s )
− 1
QP ]C

− 1
IJ )

n+1

i

+Ke(Je − 1)Je(C− 1
IJ )

n+1
i ,

(38) 

[(Re
s)IJ]

n+1
i =

⎛

⎝1 −
(Je − 2/3CQP[(Cv

s )
− 1
QP ])

n+1

i− 1
− 3

Ie
lim

⎞

⎠ (39) 

where ηe
s is viscosity parameter of viscoelastic unit s.

Repeat (33) and (34) until ‖Δqn+1
i ‖ is less than the convergence precision tol = 10− 6 or the number of Newton-Raphson iteration i 

reaches its limit.
(3) Update the acceleration at tn+1 for the calculation of subsequent time steps 

an+1 = an+1
0 +

1 − αf

1 − αm
q̈n+1

i (40) 

The detailed computational procedure is seen in Fig. 5. The viscous right Cauchy strain tensor of each viscoelastic unit is iterated 
individually. It should be noted that since electric potential is a predetermined input, the iterative calculation of φ is not considered 
during the calculation.

4. Homogeneous deformation of a DE block

To demonstrate the capability of the proposed ANCF solid element for analyzing electrically-driven mechanics of DEAs, the ho
mogeneous deformation of a DE block is simulated at first. As shown in Fig. 6(a), the DE block is in the shape of a cubic with side length 
L in the reference configuration. To constrain the deformation to be homogeneous, boundary conditions of the cube are given as 
follows: u1 = 0 on the x = 0 surface, u2 = 0 on the y = 0 surface, u3 = 0 on the z = 0 surface and φ = 0 on the z = 0 surface, where u1, 
u2 and u3 are displacements along the inertial axis directions X, Y and Z, respectively. Subject to the loading voltage φ in the Z di
rection, the cubic DE block deforms homogeneously and expands along both X and Y directions to the current configuration seen in 
Fig. 6(b). During the deforming process, principal stretches in the axis directions are expressed as λx = λy and λz = λ− 2

x .

Fig. 6. Homogeneous deformation of a DE block. Reference configuration. (b) Current configuration.

Fig. 7. Comparison of the analytical and numerical results. (a) The loading histories. (b) Lateral stretch as a function of time.
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For the homogeneous deforming DE block, the viscoelastic model with one viscoelastic unit is adopted with μ∞ = μe
1 = 67kPa, 

K∞ = Ke
1 = 6.7GPa, ηe

1 = 3000, (Ie
lim)1 = 5 and I∞

lim = 15. The length, density and permittivity are given as L = 1mm, ρ = 1.1g/cm3 

and ε = 4× 10− 11F/m, respectively. In Appendix 4, the analytical solution is also provided as a reference.
On the surface of z = L, the applied voltage is set as 

φ =

{
0.5φmsin(πt − 0.5π) + 0.5φm

φm
(41) 

and three cases involving different charges are analyzed: φm = 8kV, φm = 12kV and φm = 16kV, as seen in Fig. 7(a). It is observed in 
Fig. 7(b) that the increase of stretching ratio is obviously delayed compared with the loading of voltage because of the viscoelastic 
effect. Moreover, the simulated lateral stretches for the different values of φm are in good agreement with the analytical results, which 
demonstrates the feasibility of the proposed viscoelastic model to predict the electrically-driven deformation of DEAs.

5. Inhomogeneous deformation of a torsional DEA

To demonstrate the feasibility of applying the proposed model to the DEAs with complex shapes that cannot be analytically 
addressed, the inhomogeneous deformation of a three-dimensional torsional DEA with one full twist over its length is further inves
tigated. The length, width, and thickness are taken as Lt = 60ht , Wt = 10ht , and ht = 1mm, respectively. Fig. 8(a) shows the unde
formed discretized configuration of the torsional DEA, consisting of ne = 768 ANCF solid elements.

On the top surface, the applied voltage is given by φ = φht(ε/μ∞)
− 0.5, where φ is the dimensionless electric potential. The final 

maximum value of the dimensionless normalized electric potential on the top surface is set as φm = 0.5, while φ is held at zero on the 
bottom surface. In Fig. 8(a), both ends of the actuator is constrained: the x = 0 surface is constrained to remain planar and not rotate, 
while the x = Lt surface is only constrained to remain planar. Subject to the applied electric voltage, the torsional DEA shrinks in 
thickness, while expands in length and width, which make the front face rotate by an angle denoted by θ, as seen in Fig. 8(b).

In the simulation, the density, permittivity, shear modulus, bulk modulus and limiting stretch parameter of the DEA are given as 
ρ = 1.5g/cm3, ε = 3.4× 10− 11F/m, μ∞ = 12kPa, K∞ = 5GPa and I∞

lim = 15, respectively.
(b) Comparison between the predicted results with and without considering viscoelastic effect.
Without considering the viscoelastic effect, the actuation response θ is recorded as a function of dimensionless normalized electric 

potential φ in Fig. 9. As shown in Fig. 9(a), the predicted θ of the proposed dynamic model agrees well with the reference result from 
the previous research using the finite element formulation [44]. Compared with the finite element formulation, much fewer elements 
are used to guarantee the accuracy of the results by adopting the presented ANCF solid element, which improved the simulation 
efficiency.

Moreover, one can also investigate the viscoelastic effect of the torsional DEA by adopting the proposed viscoelastic model with one 
viscoelastic unit. Denoting the non-equilibrium shear modulus, bulk modulus, limiting stretch parameter and viscosity parameter as 
μe

1 = 80kPa, Ke
s = 7.5GPa, (Ie

lim)s = 5 and ηe
1 = 400, the predicted results with and without considering viscoelastic effect are 

compared in Fig. 9(b). Smaller twist angle is observed for the hyper-viscoelastic case, indicating the energy of the system is dissipated 

Fig. 8. Discretized configuration of the torsional DEA. (a) The reference configuration. (b) The current configuration.
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due to the viscoelastic effect. This phenomenon reveals the importance of considering the viscoelastic effect, which will have a 
nonnegligible influence on the deforming performance of the DEAs.

6. Inhomogeneous deformation of a rolled DEA

The rolled DEAs can convert the biaxial stretching induced by an applied voltage into large uniaxial deformations, which has many 
potential applications and options for construction. In this section, a rolled DEA is designed and fabricated to validate the effectiveness 
of our dynamic model. The geometric dimensions of the rolled DEA are given as h = 2mm, r = 2mm and L = 8mm, as illustrated in 
Fig. 10.

6.1. Experiment setup

The rolled DEA is made of a customized dielectric elastomer that is produced by mixing two silicones (Sylgard 170 and Elastosil 
P7676) with improved electromechanical deformation capability and response speed [16]. To fabricate the rolled DEAs, it mainly 
involves following steps: i) The liquid silicone prepolymer solution is firstly mixed by a planetary stirrer (THINKY ARE 310, 5 min), 
which is composed of a mixture formulated with 90 % by mass of Elastosil P7676 (1:1 mix ratio) and 10 % by mass of Sylgard 170 (10:1 
mix ratio); ii) the dielectric elastomer membrane (thickness of 35 um) is prepared by blade coating (Zehntner ZAA2300) onto a PET 
substrate and cured at 70℃ for 7 min; iii) the single wall carbon nanotube (SWCNT) based electrode is stamped onto the cured 
dielectric elastomer membrane; iv) a 7-layered dielectric elastomer membrane is obtained by repeating above process; v) The rolled 
DEA is fabricated by rolling the 7-layered dielectric elastomer membrane. The resultant DEA forms a hollow cylinder (inner diameter 
of 4 mm, outer diameters of 8 mm, and height of 8 mm). When a high voltage is applied, the rolled DEA can generate both axial and 
radial deformations. Especially, due to the radial limitation, the deformation is inhomogeneous, resulting in serious geometric 
nonlinearities.

Fig. 9. Twist angle as a function of the dimensionless electric potential. (a) Comparison between the predicted results of the proposed model and the 
previous research.

Fig. 10. Schematic diagram of a rolled DEA. (a) Perspective view. (b) Front view. (c) Top view.
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To investigate the complex dynamic responses of the rolled DEA, we build an experimental setup, shown in Fig. 11. The experi
mental setup mainly consists of one high voltage amplifier (Trek 10/10B-HS), one laser sensors (Keyence LK-H085), and a control 
module (dSPACE Microlab 1202). The high voltage amplifier with a fixed gain of 1000 is adopted to provide excitation voltage. The 
laser sensor is used to measure the output displacement and convert it (in the range of − 20 mm to 20 mm) into analog signal (in the 
range of − 10 V to 10 V). The control module with 16-bit analog-to-digital (16-ADC) converter and 16-bit digital-to-analog converter 
(16-DAC) can generate control signal for the high voltage amplifier and record the displacement from the laser sensor (The sampling 
time is set as 1 ms in this work).

6.2. Experimental validation

Based on the experimental setup, dynamic responses of the rolled DEA are characterized by applying the sinusoidal loading voltage 
of 

φ = 0.5φmsin(2πft + 1.5π)+0.5φm (42) 

where the frequency and magnitude of the applied voltage are represented as f and φm, respectively. Hence, the duration of each cycle 
is obtained as T = 1/f . The displacement and velocity of the highest point P along the axis direction are expressed as x and ẋ, 
respectively. In Fig. 10(b), both ends of the actuator are constrained: u2 = 0 and u3 = 0 on the top surface x = 0; u1 = 0, u2 = 0 and 
u3 = 0 on the bottom surface x = − L, where u1, u2 and u3 are displacements along the inertial axis directions X, Y and Z, respectively.

To study how the number of viscoelastic units affect the accuracy of the viscoelastic model, four different models are employed for 
dynamic simulations, including Model I with single viscoelastic unit, Model II with two viscoelastic units, Model III with three 
viscoelastic units and Model IV with four viscoelastic units, whose effectiveness will be examined through comparative experiments. In 
each the following simulations, the equilibrium bulk modulus and limiting stretch parameter are taken as K∞ = 3GPa and I∞

lim = 15, 
respectively. The non-equilibrium bulk modulus and limiting stretch parameter are kept unchanged as Ke

s = 7.5GPa and (Ie
lim)s = 5, 

while different values of μ∞(kPa), μe
s(kPa) and ηe

s are taken as shown in Table 2 (s = 1, 2, 3, 4). The density and permittivity are given as 
ρ = 1.5g/cm3 and ε = 3.4× 10− 11F/m, respectively.

The rolled DEA is modeled with ne = nl × ns × nr ANCF solid elements, where nl, ns and nr are the number of elements along axial, 
circumferential and radial direction, respectively. By changing the element number in a single direction and keeping other directions 
constant, convergence of the predicted displacement at point P for given time (t = 1/3s) is investigated. The applied periodic voltage 
with ten cycles is shown in Fig. 12(a) where f = 30Hz and φm = 50kV.

According to Fig. 12(b), enough accuracy of the predicted results is achieved even when small number of elements are adopted in 
the axial and radial direction. However, the vertical displacement at point P cannot converge to a stable value until ns > 6 in the 
circumferential direction. To ensure the accuracy and explicit more details of the deformed configuration, the rolled DEA is model with 
ne = 12 × 20 × 4 elements in the following simulations, as illustrated in Fig. 13.

Moreover, the predicted displacements of the rolled DEA at point P subject to the same loading voltage, as seen in Fig. 12(a), are 
also compared with the experimental results in Fig. 14.

Table 2 
Material parameters of the rolled DEA.

μ∞ μe
1 μe

2 μe
3 μe

4 ηe
1 ηe

2 ηe
3 ηe

4

Model I 81 80 \ \ \ 400 \ \
Model II 78 30 80 \ \ 300 200 \ \
Model III 75 10 40 80 \ 5000 300 100 \
Model IV 72 10 10 80 80 5000 2000 300 100

Fig. 11. Experimental setup.
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Fig. 12. Element convergence along axial, circumferential and radial direction. (a) The loading history. (b) The predicted displacement at point P 
for given time (t = 1/3s).

Fig. 13. The discretized elements of the rolled DEA. (a) Front view. (b) Top view.
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As shown in Fig. 14(a), the displacements at point P of all these models are drifting with time, which is generally explained as the 
viscoelastic creep. It is also noticed that the displacement in the loading process differs from the unloading results in each cycle, which 
leads to the hysteresis loop shown in Fig. 14(b). For each cycle, xmax and xmin are taken as the maximum displacement and minimum 
displacement at point P and the average displacement is given by x = 0.5(xmax + xmin), as illustrated from the results of Model IV in 
Fig. 14(d). Considering the repeatable hysteresis loop can only be observed after the first cycle, taking the average displacement of the 
second cycle as x0, the direction of viscoelastic creep can be predicted through a creep parameter kc = x/x0. According to Fig. 14(c), 
the simulation results of Model IV creeps in the same direction as the experiment that the maximum and minimum displacements are 
both getting larger with time. However, the predicted results of Model I/II are simply drifting towards the opposite direction and the 
results of Model III only increase at first and then begin to decrease in the rest of time. Through the whole deforming process of the 
rolled DEA, the increasing differences between displacements of Model I/II/III and the experimental results are observed in Fig. 14(a). 
This phenomenon indicates that only the simulation results of Model IV can predict the experimental results properly, which addresses 
the necessity of increasing the number of viscoelastic units.

Adopting the same loading history in Eq. (42), a set of sinusoidal voltages are applied to the rolled DEA, with the magnitude of 25 
kV and frequencies ranging from 10 Hz-70 Hz. To investigate the effect of changing frequency, it is assumed that the material pa
rameters are kept constant when the frequency is different. The predicted axial displacement of the rolled DEA all agree well with the 
experiment in Fig. 15(a-h), which further verifies the feasibility of the proposed model under a wide range of frequencies. However, it 
is obvious that the area of the hysteresis loop increases as the frequency gets higher, as seen in Fig. 15(b, d, f, h), which indicates more 
viscoelastic effect of the DEA in the process of fast vibration.

Fig. 16(a, b) shows a detailed observation of the hysteresis loops for the last cycle, where the frequency increases from 10 Hz to 40 
Hz and from 40 Hz to 70 Hz, respectively, which divides the changes in the hysteresis loop into two different stages. Mark two points in 
Fig. 16(a, b), including point A where E = 0V/m and point B where E = 2.5× 107V/m. In the first stage, point B moves in the direction 
of decreasing displacement as the frequency increases from 10 Hz to 40 Hz, while point A remains in its original position, as shown in 
Fig. 16(a). However, in the second stage, the movement of point B is stopped as the frequency keeps increasing from 40 Hz, while point 
A begins to move along the direction of increasing displacement, as seen in Fig. 16(b). This phenomenon shows that employing the 
loading voltage with different frequencies will make the relationship between the displacement and electric field of the DEA change in 
stages.

Fig. 14. Comparison of the numerical and experimental results of the rolled DEA subject to the cyclic voltage. (a) Displacement as a function of 
time. (b) Displacement as a function of electric field. (c) Average displacement of each cycle. (d) Maximum, minimum and average displacement of 
Model IV.
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Fig. 15. The influence of the frequency of loading voltage on dynamic response of point P. (a, c, e, g) Displacement as a function of time. (b, d, f, h) 
Displacement as a function of electric field.
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Fig. 16. Displacement at point P as a function of electric field for the last cycle. (a) Frequency increases from 10 Hz to 40 Hz. (b) Frequency in
creases from 40 Hz to 70 Hz.
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Fig. 17. Strain distribution of the rolled DEA through the first cycle with f = 10, 30, 50, 70 Hz. (a) From the front view at t = 0 s. (b) From the front 
view at t = T/2. (c) From the front view at t = T.
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Strain distribution graph is used to illustrate the three-dimensional deformation of the rolled DEA. In Appendix 5, definition of the 
strain is presented. The strain distributions of the rolled DEA through the first cycle with different frequencies are shown in Fig. 17(a- 
c). Subject to the excitation voltage, the rolled DEA converts the biaxial expansion into the large deformation along the axial direction. 
Without support inside, large strain is exhibited at the waist position of the rolled DEA, as seen in Fig. 17(b). In case that t = T/2, the 
overall strain is smaller for the DEA with higher frequency, because more energy is dissipated by viscosity. However, in case that t = T, 
the strain residue after one deforming cycle is larger when higher frequency excitation is applied to the system, as shown in Fig. 17(c), 
due to the effect of more significant viscoelastic creep. The observed dynamic responses of the rolled DEA further reveal the geometric 

Fig. 17. (continued).

Fig. 18. Dynamic response of the rolled DEA at point P subject to the cyclic voltage. (a) Displacement as a function of time. (b) Displacement as a 
function of electric field. (c) Phase portrait. (d) Creep parameter in each cycle.

L. Zhang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 241 (2025) 113405 

18 



nonlinear characteristics and inhomogeneous deformation during the deforming process, emphasizing the importance of three- 
dimensional dynamic modeling.

6.3. Effect of viscoelasticity

To further illustrate the effect of considering viscoelasticity, the predicted hyper-viscoelastic results of Model IV are also compared 
with the hyperelastic case.

According to Fig. 18(a), smaller displacement is observed for the hyper-viscoelastic case because of the energy dissipation in the 
DEA subject to cyclic electrical loads. In Fig. 18(b, d), the DEA neither exhibits the repeatable hysteresis nor the viscoelastic creep 
when the viscoelasticity effect is not considered, which is quite different from the hyper-viscoelastic results. Fig. 18(c) depicts that the 
phase difference between velocity and displacement of point P is more significant for hyperelastic case, which is related to the 
viscoelastic effect as well. Besides, the closed loop of the hyperelastic case in Fig. 18(c) also suggests that deformation of the whole 
system is periodic without considering viscosity, which is not true for the hyper-viscoelastic case. Those differences between hyper- 
viscoelastic and hyperelastic cases reveal that the viscoelastic effect is non-negligible for investigating the vibration deformation of 
a DEA subject to periodic loading voltage.

For both of the hyper-viscoelastic and hyperelastic case, the strain distributions of the rolled DEA through the first cycle are 
illustrated in Fig. 19(a-c). Compared with the hyperelastic case, smaller strain is observed for the hyper-viscoelastic case at t = T/2, 
because the viscosity leads to the energy dissipation, as seen in Fig. 19(b). However, the strain residue of the hyper-viscoelastic case at 
t = T is much larger than the hyperelastic case according to Fig. 19(c), since the system cannot return to the undeformed state after one 
deforming cycle due to the viscoelastic creep.

Fig. 19. Strain distribution of the rolled DEA for the hyper-viscoelastic and hyperelastic case. (a) From the front view at t = 0 s. (b) From the front 
view at t = T/2. (c) From the front view at t = T.
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6.4. Effect of geometric parameters

To achieve good actuation properties of a rolled DEA, it is necessary to consider proper geometric parameters in the fabrication 
process, such as the thickness, the length and the cylindrical hollow volume at the center. Apparently, different geometric parameters 
will have different effects on the working performance of the actuator, meeting different needs for different situations.

Since the loading voltage is applied on the thickness h, its influence on the deformation and viscoelastic behavior of the rolled DEA 
is firstly investigated. For this purpose, a series of dynamic simulations are conducted by applying the loading voltage in Eq. (42) with 
f = 30Hz and set the magnitude of electric field intensity per unit thickness as φm/h = 2.5× 107V/m. Three different thickness are 
taken as h = 2mm, h = 8mm and h = 14mm, while other geometric parameters are kept unchanged. It can be seen in Fig. 20 (a, d) that 
as h increases, smaller xmax and constant xmin are both observed, indicating smaller vibration amplitude for the whole system. It is also 
worth noting that the rolled DEA should be fabricated with h no less than 1 mm, since a local minimum of the displacement x occurs at 
h ∈(0, 1], which means larger deformation is no longer guaranteed by overcoming the difficulties of reducing h in the fabrication 
process. Furthermore, more significant amount of hysteresis and faster creep speed are also observed in Fig. 20(b, c) when smaller h is 
achieved, exhibiting more obvious viscoelastic effect of the rolled DEA.

Considering the rolled DEA mainly deforms in the length direction, the influence of changing the length of the whole actuator on its 
deforming performance is also analyzed in this section. By applying the loading voltage in Eq. (42) with f = 30Hz and φm = 50kV, 
three different cases are analyzed: L = 10mm, L = 38mm and L = 66mm. Contrary to the changes caused by increasing thickness, 
larger L leads to greater deformation, more hysteresis and larger xmax for the DEA, as seen in Fig. 21(a, b, d). In Fig. 21(d), xmax in
creases linearly and monotonically with the increase of L, while xmin keeps unchanged first and then decreases to a negative value as 
L > 54 mm, which means that the DEA is no longer elongated in the length direction, but shortened when x = xmin. This phenomenon 
probably results from the changes in the natural frequency of the rolled DEA when L is extremely large, which also makes the shape of 
the hysteresis loop change from a single ring into a couple rings for the case of L = 66 mm in Fig. 21(b). Meanwhile, increasing L also 
slows down the creep speed of the displacement, as shown in Fig. 21 (c), which is similar to the effect of increasing h in Fig. 20(d).

At the center of the rolled DEA, the cylindrical hollow volume can be characterized by the radius r of the cross section, whose 
influence on the displacement x is studied next. By adopting the loading voltage in Eq. (42) with f = 30Hz and φm = 50kV, the 
investigations involving three different radius are conducted: r = 0mm, r = 28mm and r = 56mm. According to Fig. 22(d), increasing 
r achieves smaller xmax when r⩽ 16 mm, but has little influence on xmin at the same time. However, as r continues to increase from 16 
mm, there will be no more significant changes in both xmax and xmin. Additionally, less viscoelastic effect of the DEA is exhibited with 

Fig. 20. The influence of thickness on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric 
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.
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Fig. 21. The influence of length on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric 
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.
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the increase of r for the case that r⩽ 16 mm, since smaller hysteresis loop and slower creep speed are both observed in Fig. 22(b, c). 
Although different radius will have certain influence on the actuation properties of the rolled DEA, its influence is worth considering 
only when r⩽ 16 mm.

6.5. Effect of different loading voltages

To provide references for controlling a rolled DEA, this subsection analyzes its dynamic responses subject to different loading 
voltages through more numerical cases.

Subject to the loading voltages in Eq. (42) with a constant frequency f = 30Hz and different magnitudes, the viscoelastic behaviors 
of the rolled DEA are further predicted for three different cases: φm = 6kV, φm = 8kV and φm = 10kV. Fig. 23(b) shows that the 
deformation is increased with larger φm, which is because of the increased attraction between opposite charges on the electrodes. As 
depicted in Fig. 23(c), all the three hysteresis loops are in the same shape of different sizes, where larger hysteresis loop means more 
significant viscoelastic effect. However, taking different φm only has slight influence on the viscoelastic creep of the DEA, according to 
the coincident curves in Fig. 23(d).

Furthermore, the influence of the voltage patterns with different loading histories on the actuation properties of the rolled DEA are 
also studied. Two different loading voltages are applied as shown in Fig. 24(a, b), which are named as VP1 and VP2 from left to right. 
Through dynamic simulations, some notable phenomena of the DEA can be observed in the hysteresis loops in Fig. 24(c, d), such as the 
memory effects, wiping-out and congruency properties [39]. As seen in Fig. 24(c), the hysteresis shows the memory effects with both 
the major loop and the minor loop, depending upon the loading histories with different amplitudes. In addition, the wiping-out 
property is also exhibited that the hysteresis output depends upon not only the current input but also the previous dominant input 
extrema. In Fig. 24(d), two minor hysteresis loops corresponding to the same input range are congruent inside the major loop, which 
reveals the congruency property of the DEA as well. These cases with different voltage patterns further illustrate the ability of the 
proposed model to describe the unique material properties of DEAs.

Fig. 22. The influence of radius on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric 
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.
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Fig. 24. Dynamic response of point P subject to ten cycles of different voltage patterns. (a, b) The loading history. (c, d) Displacement as a function 
of time.

Fig. 23. The influence of φm on dynamic response of point P. (a) The loading history. (b) Displacement as a function of time. (c) Displacement as a 
function of electric field. (d) Creep parameter as a function of time after the second cycle.
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7. Conclusions

In this paper, a numerical framework for dynamic modeling of arbitrary shaped DEAs is proposed, considering both geometric 
nonlinearity and viscoelasticity. Different from conventional viscoelastic models, the proposed model combines the ANCF method with 
a viscoelastic model adopting multiple viscoelastic units, such that it can be used for modeling of DEAs with complex shapes subject to 
cyclic loading voltages. The absolute nodal position vectors and their gradients with respect to material coordinates are used as 
generalized coordinates, which can describe the rigid-body motions and large deformations for arbitrary shaped DEAs. The volumetric 
locking of incompressible material is effectively avoided by using high-order interpolation functions. Subsequently, the generalized 
force vectors and their Jacobians are deduced as well as the mass matrix of the whole system. According to Hamilton’s principle, 
dynamic equations of the flexible system are derived, which are solved by applying the generalized α method.

Firstly, the homogeneous deformations of a DE block are predicted with the proposed model and the numerical results agree well 
with the analytical solutions. Secondly, the proposed model is proved to be applicable to the DEAs with complex shapes by investi
gating the dynamic performance of a three-dimensional torsional DEA. Next, the effectiveness of the proposed model under a wide 
frequency range is verified by conducting experiments and dynamic simulations on a rolled DEA with inhomogeneous 3D de
formations. By increasing the number of viscoelastic units in the viscoelastic model from one to four, good agreement between the 
predicted results and the experimental results is achieved. Subsequently, the necessity of considering viscoelastic effect is further 
demonstrated through the unique phenomena that are unobservable in the hyper-elastic cases, including the aperiodic deformations, 
hysteresis phenomenon, and additional energy dissipation.

Finally, the influence of geometric parameters and different loading voltages on the actuation performances of the rolled DEA is 
investigated. According to the results, good actuation properties with large axis displacement and less viscoelastic effect can be 
achieved by fabricating the rolled DEA with appropriate geometric parameters. In addition, more notable properties such as the 
wiping-out property, the congruency property and the memory effects are also observed by applying different loading histories to the 
rolled DEA. The proposed viscoelastic dynamic model will provide further references for the future analysis of the viscoelastic be
haviors in the DEAs with different shapes.
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Appendix 1 

In the following, the detailed components of the shape function in the material coordinate system are presented as 

si1 =
1
16

(1 + ξiξ)(1 + ηiη)(1 + ζiζ)fi,

si2 =
a

32
ξi(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ξ2

i ξ2 − 1),

si3 =
b

32
ηi(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(η2

i η2 − 1),

si4 =
c

32
ζi(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ζ2

i ζ2 − 1),

fi = (2 + ξiξ + ηiη + ζiζ − ξ2
i ξ2 − η2

i η2 − ζ2
i ζ2),

(43) 

where (ξi,ηi,ζi) is the local material coordinates of node i (i = 1,2,⋯,8). Each one of ξi, ηi and ζi is either − 1 or 1 depending on the 
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specific location of the node.
The partial derivatives of shape function components along axis ξ are written as 

(si1)ξ =
1
16

(1 + ηiη)(1 + ζiζ)[ξifi + (1 + ξiξ)(fi)ξ],

(si2)ξ =
1
16

(1 + ηiη)(1 + ζiζ)ξi[ξi(ξ2
i ξ2 − 1)]

+
1
16

(1 + ηiη)(1 + ζiζ)ξi[(1 + ξiξ)(2ξ2
i ξ)],

(si3)ξ =
1
16

ηiξi(1 + ηiη)(1 + ζiζ)(η2
i η2 − 1),

(si4)ξ =
1
16

ζiξi(1 + ηiη)(1 + ζiζ)(ζ2
i ζ2 − 1),

(fi)ξ = (ξi − 2ξ2
i ξ).

(44) 

The partial derivatives of shape function components along axis η can also be derived as 

(si1)η =
1
16

(1 + ξiξ)(1 + ζiζ)[ηifi + (1 + ηiη)(fi)η],

(si2)η =
1
16

ξiηi(1 + ξiξ)(1 + ζiζ)(ξ
2
i ξ2 − 1),

(si3)η =
1
16

(1 + ξiξ)(1 + ζiζ)ηi[ηi(η2
i η2 − 1)]

+
1
16

(1 + ξiξ)(1 + ζiζ)ηi[(1 + ηiη)(2η2
i η)],

(si4)η =
1
16

ζiηi(1 + ξiξ)(1 + ζiζ)(ζ
2
i ζ2 − 1),

(fi)η = (ηi − 2η2
i η).

(45) 

The partial derivatives of shape function components along axis ζ are expressed as 

(si1)ζ =
1
16

(1 + ξiξ)(1 + ηiη)[ζifi + (1 + ζiζ)(fi)ζ ],

(si2)ζ =
1
16

ξiζi(1 + ξiξ)(1 + ηiη)(ζ2
i ζ2 − 1),

(si3)ζ =
1
16

ηiζi(1 + ξiξ)(1 + ηiη)(η2
i η2 − 1),

(si4)ζ =
1
16

(1 + ξiξ)(1 + ηiη)ζi[ζi(ζ2
i ζ2 − 1)]

+
1
16

(1 + ξiξ)(1 + ηiη)ζi[(1 + ζiζ)(2ζ2
i ζ)],

(fi)ζ = (ζi − 2ζ2
i ζ).

(46) 

Appendix 2 

The derivation of trace of the elastic components of the right Cauchy strain tensor is given in appendix 2. According to Eq. (14), the 
elastic components of the right Cauchy strain tensor can be written as Ce = (Fv)

− TC(Fv)
− 1. Defining Ce = [Ce

IJ], C = [CIJ], Fv = [Fv
IJ] and 

the viscous right Cauchy strain tensor as Cv = (Fv)
TFv, each element of Ce can expressed as 

Ce
IJ =

∑n

K=1

∑n

P=1
(Fv

KI)
− 1CKP(Fv

PJ)
− 1 (47) 

The trace of Ce can be further obtained as 
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Ie
1 = tr(Ce) = Ce

II = (Fv
KI)

− 1CKP(Fv
PI)

− 1

= CKP((Fv
KI)

− 1
(Fv

PI)
− 1
)

= CKP((Fv
KI)

− 1
(Fv

IP)
− T
) = CKP(Cv

KP)
− 1

= (Cv
11)

− 1C11 + (Cv
21)

− 1C21 + (Cv
31)

− 1C31

+ (Cv
12)

− 1C12 + (Cv
22)

− 1C22 + (Cv
32)

− 1C32

+ (Cv
13)

− 1C13 + (Cv
23)

− 1C23 + (Cv
33)

− 1C33

= (Cv
11)

− 1qT
e ST

xSxqe + (Cv
21)

− 1qT
e ST

xSyqe

+ (Cv
31)

− 1qT
e ST

xSzqe + (Cv
12)

− 1qT
e ST

y Sxqe

+ (Cv
22)

− 1qT
e ST

y Syqe + (Cv
32)

− 1qT
e ST

y Szqe

+ (Cv
13)

− 1qT
e ST

z Sxqe + (Cv
23)

− 1qT
e ST

z Syqe

+ (Cv
33)

− 1qT
e ST

z Szqe.

(48) 

Additionally, the above expression can also be simplified to the form of Ie
1 = qT

e Bqe, where 

B = Cv− 1
11 ST

xSx + Cv− 1
12 ST

xSy + Cv− 1
13 ST

xSz

+ Cv− 1
21 ST

y Sx + Cv− 1
22 ST

y Sy + Cv− 1
23 ST

y Sz

+ Cv− 1
31 ST

z Sx + Cv− 1
32 ST

z Sy + Cv− 1
33 ST

z Sz.

(49) 

Appendix 3 

The expressions of the derivatives with respect to qe in Eq. (25) and Eq. (26) are stated as 
(

∂J
∂qe

)T

= ST
x (̃ryrz)+ST

y (̃rzrx)+ST
z (̃rxry) (50) 

(
∂I1

∂qe

)T

= 2(ST
xSx + ST

y Sy + ST
z Sz)qe (51) 

∂C− 1

∂qK
e

= − C− 1 ∂C
∂qK

e
C− 1

= − C− 1
(

∂F
∂qK

e

)T

F− T − F− 1
(

∂F
∂qK

e

)

C− 1,

(52) 

(
∂C− 1

IJ
∂qK

e

)

=

(
∂C− 1

∂qK
e

)

IJ
,

∂Ie
1

∂qe
= 2qT

e B (53) 

∂F
∂qK

e
= [ Sx(:,K) Sy(:,K) Sz(:,K) ] (54) 

The derivative matrix of an element in Eq. (30) are expressed as 
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J∞
e =

∫

V

μ∞H− 2

2I∞
lim

RT
1

⎡

⎣J−
2
3

(
∂I1

∂qe

)

−
2
3
J−

5
3

(
∂J
∂qe

)

I1

⎤

⎦dV

+

∫

V

1
2

μ∞H− 1R2dV −

∫

V

1
2

μ∞H− 1R3dV

+

∫

V

1
2

μ∞H− 1

⎡

⎣10
9

J−
8
3

(
∂J
∂qe

)T( ∂J
∂qe

)

I1

⎤

⎦dV

+

∫

V
K∞(J − 1)

∂
∂qe

(
∂J
∂qe

)T

dV +

∫

V
K∞
(

∂J
∂qe

)T( ∂J
∂qe

)

dV

−

∫

V

ε
2
(ETC− 1E)

∂
∂qe

(
∂J
∂qe

)T

dV −

∫

V

ε
2

J
∑

I

∑

J
EIEJ

∂
∂qe

(
∂C− 1

IJ
∂qe

)T

dV

−

∫

V

ε
2
∑

I

∑

J
EIEJ

(
∂J
∂qe

)T ∂C− 1
IJ

∂qe
dV −

∫

V

ε
2
∑

I

∑

J
EIEJ

(
∂C− 1

IJ
∂qe

)T ∂J
∂qe

dV,

(55) 

R1 = J−
2
3

(
∂I1

∂qe

)

−
2
3
J−

5
3

(
∂J
∂qe

)

I1,

R2 = J− 2/3 ∂
∂qe

(
∂I1

∂qe

)T

−
2
3
J−

5
3

(
∂I1

∂qe

)T( ∂J
∂qe

)

,

R3 =
2
3
J−

5
3

[(
∂J
∂qe

)T(∂I1

∂qe

)

+
∂

∂qe

(
∂J
∂qe

)T

I1

]

,

(56) 

Je
e =

∫

V

μeH− 2

2Ie
lim

RT
v1

⎡

⎣(Je)
−

2
3

(
∂Ie

1
∂qe

)
⎤

⎦dV

−

∫

V

μeH− 2

2Ie
lim

RT
v1

⎡

⎢
⎢
⎣

2
3
(Je)

−
5
3

Jv

(
∂J
∂qe

)

Ie
1

⎤

⎥
⎥
⎦dV

+

∫

V

1
2

μeH− 1Rv2dV −

∫

V

1
2

μeH− 1Rv3dV

+

∫

V

1
2

μeH− 1

⎡

⎢
⎢
⎣

10
9

(Je)
−

8
3

(Jv)
2

(
∂J
∂qe

)T( ∂J
∂qe

)

Ie
1

⎤

⎥
⎥
⎦dV

+

∫

V
Ke(Je − 1)

1
Jv

∂
∂qe

(
∂J
∂qe

)T

dV

+

∫

V
Ke 1
(Jv)

2

(
∂J
∂qe

)T( ∂J
∂qe

)

dV,

(57) 

Rv1 = (Je)
−

2
3

(
∂Ie

1
∂qe

)

−
2
3
(Je)

−
5
3

Jv

(
∂J
∂qe

)

Ie
1,

Rv2 = (Je)
−

2
3

∂
∂qe

(
∂Ie

1
∂qe

)T

−
2
3
(Je)

−
5
3

(
∂Ie

1
∂qe

)T( ∂J
∂qe

)

,

Rv3 =
2
3
(Je)

−
5
3

Jv

((
∂J
∂qe

)T(∂Ie
1

∂qe

)

+
∂

∂qe

(
∂J
∂qe

)T

Ie
1

)

,

(58) 
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where H = 1 − (J− 2/3I1 − 3)/I∞
lim and the detailed expressions of the derivatives are written as 

∂
∂qe

(
∂J
∂qe

)T

= ST
x (̃rySz) − ST

x (̃rzSy) + ST
y (̃rzSx)

− ST
y (̃rxSz) + ST

z (̃rxSy) − ST
z (̃rySx),

(59) 

∂
∂qe

(
∂I1

∂qe

)T

= 2(ST
xSx + ST

y Sy + ST
z Sz) (60) 

∂
∂qe

(
∂Ie

1
∂qe

)T

= 2BT,

(
∂2C− 1

IJ
∂qM

e ∂qN
e

)

=

(
∂2C− 1

∂qM
e ∂qN

e

)

IJ
(61) 

∂2C− 1

∂qM
e ∂qN

e
= −

∂C− 1

∂qM
e

(
∂F
∂qN

e

)T

F− T − C− 1
(

∂F
∂qN

e

)T∂F− T

∂qM
e

−
∂F− 1

∂qM
e

(
∂F
∂qN

e

)

C− 1 − F− 1
(

∂F
∂qN

e

)
∂C− 1

∂qM
e
.

(62) 

Appendix 4 

The analytical model for homogeneously deforming DEs is given in appendix 4. Subject to electric field along Z direction, the 
evolution equation of lateral stretch λx is written as [38] 

λ̇x =
μe

3ηv

(λ2
xλv− 1

x − λ− 4
x λv5

x )
(

1 −
2λ2

x λv− 2
x +λ− 4

x λv4
x − 3

I∞
lim

) (63) 

where λv
x is the viscous stretch obtained from 

(φz

L

)2 ε
μ∞ =

(λ− 2
x − λ− 8

x )
(

1 −
2λ2

x+λ− 4
x − 3

I∞
lim

)+
μe

μ∞
(λ− 2

x λv− 2
x − λ− 8

x λv4
x )

(

1 −
2λ2

x λv− 2
x +λ− 4

x λv4
x − 3

I∞
lim

). (64) 

Appendix 5 

In appendix 5, the norm of the strain vector of the rolled DEA is defined as 

ε =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ε2

x + ε2
y + ε2

z )
√

(65) 

where εx, εy and εz are the normal strains along X, Y and Z directions, respectively, which are given by 

εx =
1
2
(
rT

xrx − 1
)
, εy =

1
2

(
rT

y ry − 1
)
, εz =

1
2
(
rT

z rz − 1
)

(66) 

Data availability

Data will be made available on request.

References

[1] V. Mohammadi, G.S. Mohammadi, M. Tajdani, et al., Evaluating stacked dielectric elastomer actuators as soft motor units for forming artificial muscles in 
biomimetic rehabilitation robots, Actuators 13 (10) (2024) 381.

[2] A. Li, P. Cuvin, S. Lee, et al., Data -driven long-term energy efficiency prediction of dielectric elastomer artificial muscles, Adv. Funct. Mater. 34 (42) (2024) 
2406710.

[3] N. Li, Y. Xue, Y. Li, et al., A soft gripper driven by conical dielectric elastomer actuator to achieve displacement amplification and compliant grips, Intel. Serv. 
Robot. 17 (5) (2024) 993–1003.

[4] C.R. Kelley, J.L. Kauffman, Towards wearable tremor suppression using dielectric elastomer stack actuators, Smart Mater. Struct. 30 (2) (2020) 025006.

L. Zhang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 241 (2025) 113405 

28 

http://refhub.elsevier.com/S0888-3270(25)01106-9/h0005
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0005
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0010
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0010
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0015
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0015
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0020


[5] C.T. Nguyen, H. Phung, T.D. Nguyen, et al., A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators, Smart Mater. Struct. 23 
(6) (2014) 1–12.

[6] X. Ma, Y. Wang, W. Zang, et al., Fabrication of multi-layer stacked dielectric elastomer actuator with high output force by co-crosslinking of electrode with DE 
substrate, Compos. Commun. 47 (2024) 101874.

[7] J. Shintake, S. Rosset, B.E. Schubert, et al., A foldable antagonistic actuator, IEEE/ASME Trans. Mechatron. 20 (5) (2015) 1997–2008.
[8] W.J. Sun, F. Liu, Z.Q. Ma, et al., Soft mobile robots driven by foldable dielectric elastomer actuators, J. Appl. Phys. 12 (8) (2016) 084901.
[9] J. Mersch, M. Koenigsdorff, C.G.G. Nocke, High-speed, helical and self-coiled dielectric polymer actuator, Actuators 10 (1) (2021) 15.

[10] Y. Zhao, Q. Guo, S. Wu, G. Meng, W. Zhang, Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation, Mech. 
Syst. Sig. Process. 134 (2019) 106367.

[11] Z. Lai, M. Wu, J. Zhang, et al., A pendulum-type annular dielectric elastomer generator for multi-directional ultra-low-frequency vibration energy harvesting, 
Mech. Syst. Sig. Process. 220 (2022) 111704.

[12] H. Lewis, M. Pan, Soft end effector using spring roll dielectric elastomer actuators, Actuators 12 (11) (2023) 412.
[13] J. Li, L. Liu, Y. Liu, J. Leng, Dielectric elastomer spring-roll bending actuators: applications in soft robotics and design, Soft Rob. 6 (1) (2019) 69–81.
[14] G.K. Lau, H.T. Lim, J.Y. Teo, Y.W. Chin, Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing 

flappers Smart Mater, Structures 23 (2) (2014) 025021.
[15] J. Kunze, J. Prechtl, D. Bruch, et al., Design, manufacturing, and characterization of thin, core-free, rolled dielectric elastomer actuators, Actuators 10 (4) (2021) 

69.
[16] Z. Huichan, A.M. Hussain, et al., Compact dielectric elastomer linear actuators, Adv. Funct. Mater. 1804328 (2018).
[17] H.L. Zou, Z.C. Deng, H. Zhou, Revisited chaotic vibrations in dielectric elastomer systems with stiffening, Nonlinear Dyn. 110 (1) (2022) 55–67.
[18] Y. Tang, X. Yuan, Z. Zhao, et al., Periodic and chaotic vibrations of dielectric elastomer spherical shells considering structural damping, Nonlinear Dyn. 113 (2) 

(2025) 1025–1040.
[19] A. Farvandi, A.K. Mohammadi, Nonlinear vibration analysis of hyperelastic and dielectric microbeams with a control parameter using nonlinear normal modes, 

Nonlinear Dyn. 113 (3) (2025) 2045–2059.
[20] G. Rizzello, M. Hodgins, D. Naso, A. York, S. Seelecke, Modeling of the effects of the electrical dynamics on the electromechanical response of a deap circular 

actuator with a mass-spring load, Smart Mater. Struct. 24 (9) (2015) 094003.
[21] L. Huaanl, W. Huaming, Y. Youpeng, Static characteristic of dielectric elastomer cylindrical actuator, Trans. Chin. Soc. Agric. Mach. 43 (9) (2012) 202–208.
[22] R. Sarban, B. Lassen, M. Willatzen, Dynamic electromechanical modeling of dielectric elastomer actuators with metallic electrodes, IEEE/ASME Trans. 

Mechatron. 17 (5) (2012) 960–967.
[23] L.A. Garcia, M.A. Trindade, Finite element modeling and parametric analysis of a dielectric elastomer thin-walled cylindrical actuator, J. Braz. Soc. Mech. Sci. 

Eng. 41 (1) (2018) 18.
[24] B. Jamin, T.M. Kcy, E. Calius, Finite element modelling of dielectric elastomer minimum energy structure, Appl. Phys. 94 (4) (2009) 507–514.
[25] A.K. Sharma, M.M. Joglekar, A numerical framework for modeling anisotropic dielectric elastomers, Comput. Methods Appl. Mech. Eng. 344 (2019) 402–420.
[26] K. Luo, Q. Tian, H. Hu, Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers, 

Nonlinear Dyn. 102 (3) (2020) 1463–1483.
[27] F. Li, Y. Guo, L. Li, D. Zhang, W.H. Liao, Dynamic modeling of a soft robotic fish driven by dielectric elastomer based on the ANCF and IB-LBM, Mech. Syst. Sig. 

Process. 213 (2024) 111366.
[28] J. Zhang, J. Ru, H. Chen, et al., Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model, Appl. Phys. Lett. 110 

(4) (2017) 044104.
[29] Q. Tian, P. Zhang, K. Luo, Dynamics of soft mechanical systems actuated by dielectric elastomers, Mech. Syst. Sig. Process. 151 (2021) 107392.
[30] M. Bozlar, C. Punckt, S. Korkut, et al., Dielectric elastomer actuators with elastomeric electrodes, Appl. Phys. Lett. 101 (9) (2012) 091907.
[31] G. Moretti, G. Rizzello, M. Fontana, S. Seelecke, High-frequency voltage-driven vibrations in dielectric elastomer membranes, Mech. Syst. Sig. Process. 168 

(2022) 108677.
[32] X. Zhao, S.J.A. Koh, Z. Suo, Nonequilibrium thermodynamics of dielectric elastomers, Int. J. Appl. Mech. 3 (2) (2011) 203–217.
[33] C.C. Foo, S. Cai, S.J.A. Koh, et al., Model of dissipative dielectric elastomers, J. Appl. Phys. 111 (3) (2012) 836.
[34] A. Khurana, A.K. Sharma, M.M. Joglekar, Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures, 

Nonlinear Dyn. 104 (3) (2021) 1991–2013.
[35] F. Liu, J. Zhou, Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers, 

J. Appl. Mech. 85 (1) (2018) 011005.
[36] D. Eder-Goy, Y. Zhao, B.X. Xu, Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading, Acta Mech. 228 (2017) 

4293–4307.
[37] C.C. Foo, S.J.A. Koh, C. Keplinger, et al., Performance of dissipative dielectric elastomer generators, J. Appl. Phys. 111 (9) (2012) 836–839.
[38] A.K. Sharma, M.M. Joglekar, A computationally efficient locking free numerical framework for modeling visco-hyperelastic dielectric elastomers, Comput. 

Methods Appl. Mech. Eng. 352 (2019) 625–653.
[39] G.Y. Gu, U. Gupta, J. Zhu, et al., Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator, IEEE Trans. Rob. 33 (5) (2017) 

1263–1271.
[40] A. Alibakhshi, H. Heidari, Nonlinear dynamics of dielectric elastomer balloons based on the Gent-Gent hyperelastic model, Eur. J. Mech. A Solids 82 (1) (2020) 

103986.
[41] H.L. Li, L.L. Chen, C. Zhao, et al., Evoking or suppressing electromechanical instabilities in soft dielectrics with deformation-dependent dielectric permittivity, 

Int. J. Mech. Sci. 202–203 (5454) (2021) 106507.
[42] L.J. Liu, Y.C. Han, Z.C. Xing, et al., Nonlinear deformation and instability of a dielectric elastomer tube actuator, Int. J. Non Linear Mech. 147 (7) (2022) 

104235.
[43] K. Mrabet, E. Zaouali, F. Najar, Internal resonance and nonlinear dynamics of a dielectric elastomer circular membrane, Int. J. Solids Struct. 236–237 (10) 

(2021) 111338.
[44] D.L. Henann, S.A. Chester, K., Modeling of dielectric elastomers: Design of actuators and energy harvesting devices, J. Mech. Phys. Solids 61 (10) (2013) 

2047–2066.
[45] R. Mao, B. Wu, E. Carrera, et al., Electrostatically tunable small-amplitude free vibrations of pressurized electro-active spherical balloons, Int. J. Non Linear 

Mech. 117 (2019) 103237.

L. Zhang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 241 (2025) 113405 

29 

http://refhub.elsevier.com/S0888-3270(25)01106-9/h0025
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0025
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0030
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0030
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0035
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0040
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0045
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0050
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0050
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0055
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0055
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0060
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0065
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0070
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0070
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0075
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0075
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0080
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0085
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0090
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0090
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0095
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0095
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0100
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0100
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0105
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0110
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0110
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0115
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0115
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0120
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0125
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0130
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0130
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0135
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0135
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0140
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0140
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0145
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0150
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0155
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0155
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0160
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0165
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0170
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0170
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0175
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0175
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0180
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0180
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0185
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0190
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0190
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0195
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0195
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0200
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0200
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0205
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0205
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0210
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0210
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0215
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0215
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0220
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0220
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0225
http://refhub.elsevier.com/S0888-3270(25)01106-9/h0225

	Hyper-viscoelastic dynamic modeling and analysis for soft dielectric elastomer actuators
	1 Introduction
	2 Dynamic modeling of the DEA
	2.1 ANCF solid element of DEA
	2.2 Viscoelastic model with multiple spring-dashpot units
	2.3 Formulation of nonlinear dynamic equations

	3 Computational strategy
	3.1 Dynamic equations
	3.2 Computational procedure

	4 Homogeneous deformation of a DE block
	5 Inhomogeneous deformation of a torsional DEA
	6 Inhomogeneous deformation of a rolled DEA
	6.1 Experiment setup
	6.2 Experimental validation
	6.3 Effect of viscoelasticity
	6.4 Effect of geometric parameters
	6.5 Effect of different loading voltages

	7 Conclusions
	8 Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix 1 Acknowledgements
	Appendix 2 Acknowledgements
	Appendix 3 Acknowledgements
	Appendix 4 Acknowledgements
	Appendix 5 Acknowledgements
	Data availability
	References


