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ARTICLE INFO ABSTRACT

Communicated by Olga Fink For the dielectric elastomer actuators (DEAs) with high-frequency excitations and large de-
formations, it is full of challenges to accurately describe their continuum dynamic responses due
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(ANCF) possesses notable advantages in precisely depicting the rigid-body motions and large
deformations of the DEAs. In this paper, a novel ANCF hyper-viscoelastic solid element for
arbitrary shaped DEAs is developed, where the accuracy of predicting viscoelasticity is improved
by adding more viscoelastic units to a two-part constitutive viscoelastic model. The volumetric
locking problem of incompressible material is effectively avoided by using high-order interpo-
lation functions. Firstly, the homogeneous deformations of a dielectric elastomer block are pre-
dicted with the proposed model and verified with the analytical solutions. Secondly, the proposed
model is proved to be applicable to the DEAs with complex shapes by studying the dynamic
response of a three-dimensional torsional DEA. Subsequently, the effectiveness of the proposed
model under a wide frequency range is demonstrated through the experiments and dynamic
simulations of a rolled DEA. The numerical results show that the hysteresis effect and creep of the
rolled DEA are predicted more precisely with the proposed model than those obtained with only
one viscoelastic unit. Finally, the effect of changing geometric parameters and applying different
loading voltages on the actuation properties of a rolled DEA are further analyzed. The proposed
viscoelastic dynamic model can be implemented effectively in the design of a complex DEA with
fast responsiveness and high deformability.

1. Introduction

Dielectric elastomer (DE) material is an electroactive polymer material that was gradually developed in the 1990s. It is charac-
terized by its large deformation that the applied voltage can make it expand horizontally and shrink vertically at the same time, as
illustrated in Fig. 1. Because of its good deformability stimulated by electric energy, DE becomes a heated research topic among re-
searchers and has been widely used in the fields like biomedicine, intelligent robots and wearable devices [1-3]. It is also found that DE
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Fig. 1. The voltage-induced deformation of a dielectric elastomer membrane.
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Fig. 2. The rolling process of a rolled DEA. (i-ii) Rolling the DE membrane into a tubular shape. (iii) Glueing flat caps to the ends and applying
voltage in the radial (thickness) direction.

exhibits many other notable features, such as large energy densities, quick response to voltages and obvious viscoelasticity. These
characteristics make DE particularly attractive for soft actuator applications especially in harsh environments. Therefore, it is of great
significance to conduct further studies on DE’s electrodeformation principle and designs, which can advance the development and
application of DEAs.

In order to improve the response speed and deformation of dielectric elastomer actuator (DEA) under electrical load, researchers
have designed many different configurations of DEAs, such as the stacked DEA [4-6], the foldable DEA [7,8], the spiral DEA [9] and
the annular DEA [10,11]. The rolled DEA is made by bending the dielectric elastomer membrane into a tubular shape, as seen in Fig. 2,
usually supported by a compressed spring inside [12-14]. Without outer frame and any spring core inside, the rolled DEA will have a
longer service life and smaller unidirectional actuation elongation [15,16]. The centrally symmetrical configuration of the rolled DEA
can generate more mechanical energy by converting its biaxial stretching into a large uniaxial deformation subject to the applied
voltage.

Associated with nonlinear electrostatics, hyper-viscoelastic membrane behavior and geometric nonlinearities, it is challenging to
precisely model the DEAs and performing numerical simulations. In the previous researches, the static characteristics of the DEAs were
fully studied [21]. Recently, some efficient dynamic models have been developed to model the DEAs using few degrees of freedom
[17-19], such as the physical model for the dielectric electroactive polymer (DEAP) actuator system coupling both electrical and
mechanical dynamics [20] and the nonlinear electromechanical model for the PolyPower DEA based on an electric circuit model [22].
In these researches, the stretches in the main directions are usually used to describe the deformation of the DEAs with typical con-
figurations such as spherical [40], rectangular [41], tubular [42], and circular [43] shapes. To obtain more details of 3D deformed
configuration and achieve more accurate results, the nonlinear finite element method is further developed for the DEAs [23-25].
Compared with the traditional finite element method, the absolute nodal coordinate formulation (ANCF) possesses notable advantages
in precisely depicting the rigid-body motions and large deformations of flexible body. Recently, several researches of the DEAs based
on ANCF have been carried out [26,27], where the viscoelastic effects are hardly addressed.

As akind of polymer material, the DE material has significant viscoelasticity effect such as viscoelastic creep under constant voltage
signal [28] and hysteresis subject to cyclic loading voltages [29,30]. In the previous research, there is a simplified way to describe the
viscoelasticity of DEAs by making use of an experiment-based identification, without explicit use of a viscoelastic model [31].
Viscoelastic theories based on the Bergstrom-Boyce model has been generalized to investigate both anisotropy and viscoelasticity of DE
membrane [32-34]. Based on the rheological model, several analytical models accounting viscoelastic effects have been presented to
describe the unconstrained configurations of DEAs involving homogeneous deformations [35-37]. By adding more parallel
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viscoelastic units to the conventional model, the viscoelastic effects of DEAs can be predicted more accurately [39]. Furthermore, a
computationally efficient numerical framework is also developed to capture the viscoelastic behaviors and inhomogeneous de-
formations of the DEAs with complex geometries [38].

In order to precisely predict the viscoelastic behaviors of the DEAs with fast responsiveness and inhomogeneous deformations, it is
crucial to develop a general visco-hyperelastic dynamic model with multiple viscoelastic units, which is applicable to DEAs in arbitrary
shapes.

In the following section, a viscoelastic dynamic model with multiple viscoelastic units for the arbitrary shaped DEAs is established
first based on the ANCF method, and then dynamic equations of the whole system are derived according to the Hamilton’s principle.
Section 3 describes the procedure of solving the dynamic equations by applying the generalized o method. In Section 4, the homo-
geneous deformations of a dielectric elastomer block are simulated and verified with the analytical solutions. In Section 5, the pro-
posed model is proved to be applicable to the DEAs with complex shapes by investigating the dynamic performance of a three-
dimensional torsional DEA. In Section 6, the effectiveness of the developed model is validated experimentally by performing dy-
namic simulations of a rolled DEA subject to cyclic loading voltage. Subsequently, the influence of different geometric parameters and
loading histories on the actuation properties of the rolled DEA are further analyzed. Finally, conclusions of the investigation will be
summarized.

2. Dynamic modeling of the DEA
2.1. ANCEF solid element of DEA

For flexible systems with large deformation, geometric nonlinearity needs to be considered in the modeling process. Currently,
dynamic modeling methods for large deformation problems mainly include three types: absolute nodal coordinate formulation
(ANCF), corotational method and geometrically exact formulation. In this investigation, absolute nodal coordinate formulation
(ANCEF) is used for dynamic modeling of the DEA [26], in which the absolute coordinates of the nodes in the inertial coordinate system
and their gradients are used as generalized coordinates to describe the configuration of the flexible system.

As seen in Fig. 3, 0-XYZ is the inertial coordinate system. For a solid element with 8 nodes, the reference configuration is defined as
Qo, and the base vectors of the reference material coordinate system are a.(c = 1,2,3). The current configuration at time t is defined as
Q, and the base vectors of the current material coordinate system are A.(c = 1,2,3). To evolve the system dynamic equations of the
DEAs in arbitrary shapes, the absolute nodal position vectors and their gradients with respect to the material coordinates are denoted
as generalized coordinates.

In the current configuration, the absolute position vector of an arbitrary material point is expressed as

r=35q, @
S—[S, S, - Ss] )
Si=[sa s2 s3 Sull 3

where S is the shape function matrix, s; (I = 1,2,3,4) are provided in Appendix 1 and the vector of element coordinates g, is given by

T
.=l@g) @ - @] )
To alleviate the volumetric locking problem of incompressible material, gradient coordinates are included in each node of the
element, the coordinate vector of each node takes the form

@) @' ®)

5
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Fig. 3. Configuration of the DE solid element.
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where ¥ is the absolute position vector of node i (i = 1,2, ---,8) and rJ' is the partial derivatives of r with respect to the material

coordinate j j = &,7,0).
The deformation gradient with respect to the material coordinates is defined as

F.= [rf ry rs] = [séqe s’lqe SlqeL (6)
wherer; = dr/o¢, r, = or/on, r, = 0r/d, S: = 0S/0¢, S, = 0S /oy, S, = 0S/o¢.

In the reference configuration, the absolute position vector is expressed as ro = S§¢,, = [x ¥ z]" and the deformation gradient
with respect to ry is given by

F=[r, 1, 1.]=[Sq, S, S.q.], )

wherer, = or/ox, r, = or/dy, r, = dr/oz, Sy = 0S/ox, S, = 0S/dy, S, = 0S/oz.

The transformation between F and F, is realized by

-1

where the current material coordinate vector is defined asp = [¢ 5 ¢]" and

Jr,
d—po =[ro: Toy To] =[S0 Si9e0 Scleo] )
or, -1 B éx gy éz
(a_;> = [S:‘Ieo SﬁqeO S:Qeo] '= Ny Zy Zz (10)
Z:x y z

Based on Eq. (6)-(10), Sy, S,, S; are further evolved

SX = Sfé:x + Srlrlx + s{Cx-,
S}’ = Sféy + Sllr]y + S{C}H (11)
S, = S@éz + S;]ﬂz + S{Cz'

Denoting the electric potential and its gradients of the material point as ¢, and its gradients as ¢, = dp/dx, @, = 0dp/dy, ¢, =
0¢p/0z, the nominal electric field E is given as

E=[o. 9, ¢ (12)

2.2. Viscoelastic model with multiple spring-dashpot units

As a polymer material, the DE materials have significant viscoelasticity. Commonly, the viscoelasticity of DEAs is represented with
a two-part constitutive model with a single spring element in parallel to one spring-dashpot unit. In this paper, more parallel visco-
elastic units are added to the two-part constitutive model, which can help in predicting the viscoelastic effects of DEAs more accu-
rately. As shown in Fig. 4, a single spring element is used to model the elastic equilibrium response, which is in parallel to multiple
spring-dashpot units representing the viscous responses of DEAs.

1 Non-equilibrium Part

yeL ! Equilibrium

free energy

1
1
i
Non-equilibrium :
shear modulus :

1

1

Non-equilibrium
free energy

1
1
1
U » Equilibrium
] shear modulus

Viscosity parameter «—L——1L

l Single spring
element

Fig. 4. The viscoelastic model with a single spring element in parallel to multiple spring-dashpot units.



L. Zhang et al. Mechanical Systems and Signal Processing 241 (2025) 113405

In this paper, the equilibrium free energy function U* and the non-equilibrium free energy function U¢ for viscoelastic unit s are
both characterized by the Gent model, which can precisely describe the stiffening phenomenon of DEAs in large deformations. The
equilibrium shear modulus, bulk modulus and limiting stretch parameter are presented by 4, K, and I , respectively, and the non-
equilibrium shear modulus, bulk modulus and limiting stretch parameter of the viscoelastic unit s are presented by u¢, K¢, and (I )¢,
respectively. Viscosity parameter of viscoelastic unit s is denoted as 7¢. For each viscoelastic unit, #°, y¢, K® and I; | are used to facilitate
the derivation of the following formulations.

Defining F° and F” as the elastic and viscous components of the deformation gradient, respectively, the total deformation gradient is
composed of two parts as F = F°F’. Therefore, elastic component of the deformation gradient can be written in the form of F¢ =

F(F")"!. Denoting the viscous right Cauchy strain tensor as
¢ =(P)'F 13)
the elastic component of the right Cauchy strain tensor is obtained as

c=F)F =F)"cF)" a4

where the right Cauchy-Green tensor C is expressed as C = F'F. Considering Eq. (7) and Eq. (14), the traces of C and C° can also be
obtained as

L =tr(C) = q,(SxSx +5,S, + 5.5.)q, (15)
I, = tr(C*) = q,Bg, (16)
where
=ClS's, + ¢ 1STS + C]]/SlSTS
+Cy;'S)S, +C,'S)S, + C}5'S)S, a7)
+Cy SIS, + ¢y 1STS + C55'SIS,.
in which C};? is an element of (€¢")™!, and the derivation of B is derived in Appendix 2 in detail.
Based on Eq. (7), the determinant of the deformation gradient is derived as J = det(F). Employing the determinants of the elastic as
J¢ and viscous components of the deformation gradient as J* = det(F”) = /det(C"), the determinant of the elastic component of the
deformation gradient is derived as J¢* = J/J".

To capture the particular strain-stiffening effect of DEAs, the incompressible Gent model of hyperelasticity is adopted to derive the
equilibrium free energy

o700 J2Pn -3
Us = /[75,4 Ihmln( - )}dv

(18)
1 1
+/ ZK*(J—1)* = Z¢JE'CE|dV
V12 2
and the non-equilibrium free energy of each viscoelastic unit is written as
1 J) P -3
U= / Clep (1o =3) gy
\4 2 Iﬁm
(19)

+/VBK6(JE - 1)2]dv

where the limiting stretch parameter I? and I,  reflect the limiting chain extensibility of rubber networks of the DEs, which can

lim lim
reduce the Gent model to the neo-Hookean model in the limit of I}, oo [45].
Hence, the free energy of element e can be derived as
ny
U= UT > (), (20)
s=1

where nv is the total number of viscoelastic units.
2.3. Formulation of nonlinear dynamic equations

According to Hamilton’s principle, the variational equation of the system is obtained as

SWT — 5U + W™t = 0 21
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Table 1
Relationships between the variables of element e and the variables of the system.
Element e System Relationship
Generalized coordinates q, q q. = B.q
Mass matrix M, M M= Z B'M.,B,
e=1
Generalized external force Qe Q™ Q™ = Z BTQ
e=17¢
Generalized internal force QM Qnt Q™ — Z BrQint
e=1
Free energy U, U U= Z"B U.
=1

where the virtual work of inertial force and the external force of the system are expressed as
SWer = —5q"Mg, SW™ = 5q"Q™ (22)
and the variation the free energy of the system is given by
85U = 8q"Q™ (23)
where Q™ and Q°** are the generalized internal force vector and the generalized external force vector, respectively.
Defining a conversion matrix as B,, the relationships between the variables of element e (¢ =1 ~ ne) and corresponding variables

of the whole system are listed in Table 1.
For element e, according to the rheological model in Fig. 4, the element internal force vector is denoted as

Q=QC+ ) (@) (24)

where QF and (Q¢) ; are derived from the equilibrium free energy and the non-equilibrium free energy, respectively.
For each elastic and viscoelastic unit, the expressions of Q5° and Q¢ are given by

S A L - N I A
@ [ )
v2 Ie 3 oq,) !
+/K°°(J—1)<6J) dV—/f(ETC’lE)(ﬂde
v aqe V2 aqe
€ ac;H\ "
/V 2JZZE1EJ< o dv,

-1

Je 3Ie 3 ol
J¢ dv
Qe / llm ( ) (aqe>

dav

dv

(25)

-1

2 5
e (Jo) 3¢ — 3 200973 (aT\"
- 1- =\r
/V 3 \dq,) ! v

+ /va(f - 1)JV (S;E>Tdv

e

(26)

and the derivatives of Q° and Q¢ with respect to g, are provided in Appendix 3.
Therefore, the variational dynamic equations of the flexible system can be obtained as

5" (Mg + Q™ +Q — Q™) =0 (27)
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3. Computational strategy
3.1. Dynamic equations

In this study, the electric field is applied by the preset charge loading, which means that the electric potential is known in advance.
For constrained dynamic system, the constraint equations are presented as ® = 0 and &, = d®/dq is the Jacobian matrix. Introducing
Lagrange multipliers A to the constrained system, the dynamic equations are obtained
_ Mg d ) e _ (ext <I)T 2
o g+ +Q"+Q -Q™ + 9, —o (28)

[}
where an additional generalized structural damping force Q? = C%q is considered to reduce numerical oscillation of dynamic results.
Taking the structural damping coefficient as cq4, the relationship between structural damping matrix and the mass matrix is expressed
asC?! = cgM.

To solve dynamic equations with the implicit time-integration algorithm, the Jacobian matrix of the system is needed

_ Ma—q+Cda—q+J°°+Je !
J= oq aq 1 (29)

@, 0
J® ;BTJ”B Jo= ZZBT ).Be (30)

where J® and J¢ are separately derived in Appendix 3.
3.2. Computational procedure

In this investigation, the dynamic results are obtained by solving the dynamic equations with the generalized-a method. To
effectively filter out the high-frequency components of dynamic responses, the numerical damping of the generalized a method is
considered in the computational procedure, which is controlled by the spectral radius p,, = 0.8. The parameters used in the gener-
alized o method can be expressed by p_, as

_ 2p -1 P
am = e 1 , Af = Pt 1 31D
7 =0.5+0a; — ay, f = 0.25(y + 0.5) (32)
At the initial time, the time increment and the element coordinates are set as Aty = 10~*sand q° = | (qgl )T (qu)T (q28)T ]T,
respectively, where the initial nodal coordinates are given by q% = [ (r%)” (r?")T (rfi’i)T (rgi)T ]T(i =1,2,-+,8). The maximum and

minimum value of the time increment At, are set as (At,).,, = 107*s and (At,),,, = 10~°s, respectively.

Let n denote the number of time steps and i denote the number of convergence cycles, the converged value ¢**!, A**! and

max min

(C;’)"+1 (s =1,2,---,nv) at time ¢, (t,<tira) are calculated with the following steps, where t;., is the total duration.
(1) Initialization

a;™ = (%q" — ana")/(1 — an),

q! = q" + At " + A(0.5 - p)a” + A part, 33

gt = q +At(1 - y)d" + Atyya}'?,
@ =025 =0,(C)y" =1L,
where a is the acceleration vector and I is a three-dimensional unit matrix.
(2) Newton-Raphson iteration
+1 Aq"“ —n+1
‘]T Aanrl - - (I) (34)

where the increment of g**! and A7™! are both obtained as
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|

i’ = (o,4" ~a,a") [(-a,),
qrt =q" + At q" + A2(0.5- Ba” + A pal,

4" ="+ A1, (1= +Ar,,ya:}”
qgl] 0’ )'(1)101 0 ((w\ )m]
g O
i Newton Iteration L =1, +At,
|
! r o o e X +l n
| | | Mie 07 000 +¢;z} Jn+1[Aq 1'} _ g
| i @ , v
1
| }
: lm] _qr1|ll+Aqn|l lml Iml yrAqn»l
1
: qln+1 —q,’Hll +ﬁ/Aqn+l lln+l — l[n+11 +Mln+l
1 - |
1 I I T
v s=1 i [teration of viscoelastic units !
1
: i F’n+1, C]m] [(S )]J]nﬂ _[(S’ )u]”H(C"H (C )11+l
1
e :
1 1
: : [((w )M/]:H-l — [((w\ )wj]m—l
: : 2 ‘ . 1 ] L . n+l
o +A —| CoieSip == CrySxOyp [(CS)ps
1 ! ne 3 }
e
1 1
: | Yes s=s+1
R
1 L A
1
X i=i+l No
1
I
n=n+1 No
il < Ilolal
an+1 an+1 + S qn+1

Fig. 5. Computational procedure of the generalized « method.

sn+1

q;H’l _ q:l+1l + Aq"”,q?“ _ ql R +;/Aq"+l,
q?+1 — q:1+11 +ﬂ'Aq;H1,ﬂ.;H1 — x;ljll + Aﬂ.;ﬂl,

fo_t=Om 7
(1 —appag” — paty

The deformation gradient F**! and the right Cauchy-Green tensor C{"! are derived as

F =[S, 8, 8](q)" ¢ =F"F

(35)

(36)

Subsequently, the viscous right Cauchy strain tensor C; of viscoelastic unit s is evolved by integrating the evolution equation using

the Backward Euler method [38]

n+1

(" = At[n—ze

s

1
(CMKS;(p - EC,NS};,&MP) (Cl')w}

+COwliy

i

(37)
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Fig. 6. Homogeneous deformation of a DE block. Reference configuration. (b) Current configuration.

n+l n+l

(Sl = uede 2PIR, T (€)'

1 n n+
—T R (CarlCgpiC); (38)
KOS = DG
Je ’2/3C c _q1q 1 _3
[(R:)IJKH] = (1 - ( QP[(IeS)QPDFl ) (39)
lim

where #¢ is viscosity parameter of viscoelastic unit s.

Repeat (33) and (34) until | Ag}|| is less than the convergence precision tol = 10~° or the number of Newton-Raphson iteration i
reaches its limit.

(3) Update the acceleration at t,;; for the calculation of subsequent time steps

1- Qf .ni1
T—a,t (40)

an+1

1
=a;™ +
The detailed computational procedure is seen in Fig. 5. The viscous right Cauchy strain tensor of each viscoelastic unit is iterated
individually. It should be noted that since electric potential is a predetermined input, the iterative calculation of ¢ is not considered
during the calculation.

4. Homogeneous deformation of a DE block

To demonstrate the capability of the proposed ANCF solid element for analyzing electrically-driven mechanics of DEAs, the ho-
mogeneous deformation of a DE block is simulated at first. As shown in Fig. 6(a), the DE block is in the shape of a cubic with side length
L in the reference configuration. To constrain the deformation to be homogeneous, boundary conditions of the cube are given as
follows: u; = 0 on the x = 0 surface, uz = 0 on the y = 0 surface, uz = 0 on the z = 0 surface and ¢ = 0 on the z = 0 surface, where u;,
up and us are displacements along the inertial axis directions X, Y and Z, respectively. Subject to the loading voltage ¢ in the Z di-
rection, the cubic DE block deforms homogeneously and expands along both X and Y directions to the current configuration seen in
Fig. 6(b). During the deforming process, principal stretches in the axis directions are expressed as 4, = 4, and 4, = ;2.

25 1.04
—¢m = 8kV Numerical
20t ¢m = 12kV | © Analytical Pm = 16kV
......... bm = 16kV 1.03 oese9000000000000000
157 7
- \ d
< 1.02¢ d b = 12KV
< 10 ?  _2000000000000000000000
9 oo
5t 101} ooooo d)m = 8kV
0 .
0 0.5 1 1.5 2

t(s)
(a) (b)

Fig. 7. Comparison of the analytical and numerical results. (a) The loading histories. (b) Lateral stretch as a function of time.
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For the homogeneous deforming DE block, the viscoelastic model with one viscoelastic unit is adopted with y® = u$ = 67kPa,
K* =K¢ =6.7GPa, f = 3000, (I ), =5 and I}, = 15. The length, density and permittivity are given as L = 1mm, p = 1.1g/cm?®
and ¢ = 4 x 10"1'F/m, respectively. In Appendix 4, the analytical solution is also provided as a reference.

On the surface of z = L, the applied voltage is set as

o= { 0.5¢,,sin(zt — 0.57) + 0.5¢,, 1)

Pm

and three cases involving different charges are analyzed: ¢, = 8kV, ¢, = 12kV and ¢,, = 16kV, as seen in Fig. 7(a). It is observed in
Fig. 7(b) that the increase of stretching ratio is obviously delayed compared with the loading of voltage because of the viscoelastic
effect. Moreover, the simulated lateral stretches for the different values of ¢, are in good agreement with the analytical results, which
demonstrates the feasibility of the proposed viscoelastic model to predict the electrically-driven deformation of DEAs.

5. Inhomogeneous deformation of a torsional DEA

To demonstrate the feasibility of applying the proposed model to the DEAs with complex shapes that cannot be analytically
addressed, the inhomogeneous deformation of a three-dimensional torsional DEA with one full twist over its length is further inves-
tigated. The length, width, and thickness are taken as L; = 60h;, W, = 10h,, and h, = 1mm, respectively. Fig. 8(a) shows the unde-
formed discretized configuration of the torsional DEA, consisting of ne = 768 ANCF solid elements.

On the top surface, the applied voltage is given by ¢ = @h,(e/u®) >, where 7 is the dimensionless electric potential. The final
maximum value of the dimensionless normalized electric potential on the top surface is set as @,, = 0.5, while ¢ is held at zero on the
bottom surface. In Fig. 8(a), both ends of the actuator is constrained: the x = 0 surface is constrained to remain planar and not rotate,
while the x = L, surface is only constrained to remain planar. Subject to the applied electric voltage, the torsional DEA shrinks in
thickness, while expands in length and width, which make the front face rotate by an angle denoted by 6, as seen in Fig. 8(b).

In the simulation, the density, permittivity, shear modulus, bulk modulus and limiting stretch parameter of the DEA are given as
p =1.5g/em?, ¢ = 3.4 x 107 1F/m, y* = 12kPa, K* = 5GPa and [, = 15, respectively.

(b) Comparison between the predicted results with and without considering viscoelastic effect.

Without considering the viscoelastic effect, the actuation response @ is recorded as a function of dimensionless normalized electric
potential @ in Fig. 9. As shown in Fig. 9(a), the predicted 6 of the proposed dynamic model agrees well with the reference result from
the previous research using the finite element formulation [44]. Compared with the finite element formulation, much fewer elements
are used to guarantee the accuracy of the results by adopting the presented ANCF solid element, which improved the simulation
efficiency.

Moreover, one can also investigate the viscoelastic effect of the torsional DEA by adopting the proposed viscoelastic model with one
viscoelastic unit. Denoting the non-equilibrium shear modulus, bulk modulus, limiting stretch parameter and viscosity parameter as
ui = 80kPa, K¢ = 7.5GPa, (If ), =5 and 7§ = 400, the predicted results with and without considering viscoelastic effect are
compared in Fig. 9(b). Smaller twist angle is observed for the hyper-viscoelastic case, indicating the energy of the system is dissipated

Bottom
Surface

¢

(a) (b)

Fig. 8. Discretized configuration of the torsional DEA. (a) The reference configuration. (b) The current configuration.
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Fig. 9. Twist angle as a function of the dimensionless electric potential. (a) Comparison between the predicted results of the proposed model and the
previous research.

due to the viscoelastic effect. This phenomenon reveals the importance of considering the viscoelastic effect, which will have a
nonnegligible influence on the deforming performance of the DEAs.

6. Inhomogeneous deformation of a rolled DEA

The rolled DEAs can convert the biaxial stretching induced by an applied voltage into large uniaxial deformations, which has many
potential applications and options for construction. In this section, a rolled DEA is designed and fabricated to validate the effectiveness
of our dynamic model. The geometric dimensions of the rolled DEA are given as h = 2mm, r = 2mm and L = 8mm, as illustrated in
Fig. 10.

6.1. Experiment setup

The rolled DEA is made of a customized dielectric elastomer that is produced by mixing two silicones (Sylgard 170 and Elastosil
P7676) with improved electromechanical deformation capability and response speed [16]. To fabricate the rolled DEAs, it mainly
involves following steps: i) The liquid silicone prepolymer solution is firstly mixed by a planetary stirrer (THINKY ARE 310, 5 min),
which is composed of a mixture formulated with 90 % by mass of Elastosil P7676 (1:1 mix ratio) and 10 % by mass of Sylgard 170 (10:1
mix ratio); ii) the dielectric elastomer membrane (thickness of 35 um) is prepared by blade coating (Zehntner ZAA2300) onto a PET
substrate and cured at 70°C for 7 min; iii) the single wall carbon nanotube (SWCNT) based electrode is stamped onto the cured
dielectric elastomer membrane; iv) a 7-layered dielectric elastomer membrane is obtained by repeating above process; v) The rolled
DEA is fabricated by rolling the 7-layered dielectric elastomer membrane. The resultant DEA forms a hollow cylinder (inner diameter
of 4 mm, outer diameters of 8 mm, and height of 8 mm). When a high voltage is applied, the rolled DEA can generate both axial and
radial deformations. Especially, due to the radial limitation, the deformation is inhomogeneous, resulting in serious geometric
nonlinearities.

(a)

Fig. 10. Schematic diagram of a rolled DEA. (a) Perspective view.

(b)

(c)

(b) Front view. (c) Top view.
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Fig. 11. Experimental setup.

To investigate the complex dynamic responses of the rolled DEA, we build an experimental setup, shown in Fig. 11. The experi-
mental setup mainly consists of one high voltage amplifier (Trek 10/10B-HS), one laser sensors (Keyence LK-H085), and a control
module (dASPACE Microlab 1202). The high voltage amplifier with a fixed gain of 1000 is adopted to provide excitation voltage. The
laser sensor is used to measure the output displacement and convert it (in the range of —20 mm to 20 mm) into analog signal (in the
range of —10 V to 10 V). The control module with 16-bit analog-to-digital (16-ADC) converter and 16-bit digital-to-analog converter
(16-DAC) can generate control signal for the high voltage amplifier and record the displacement from the laser sensor (The sampling
time is set as 1 ms in this work).

6.2. Experimental validation

Based on the experimental setup, dynamic responses of the rolled DEA are characterized by applying the sinusoidal loading voltage
of

¢ = 0.5¢,,sin(2xft + 1.57) + 0.5¢,, (42)

where the frequency and magnitude of the applied voltage are represented as f and ¢, respectively. Hence, the duration of each cycle
is obtained as T = 1/f. The displacement and velocity of the highest point P along the axis direction are expressed as x and x,
respectively. In Fig. 10(b), both ends of the actuator are constrained: u; = 0 and u3 = 0 on the top surface x = 0; u; = 0, uy = 0 and
uz = 0 on the bottom surface x = —L, where u;, uy and ug are displacements along the inertial axis directions X, Y and Z, respectively.

To study how the number of viscoelastic units affect the accuracy of the viscoelastic model, four different models are employed for
dynamic simulations, including Model I with single viscoelastic unit, Model II with two viscoelastic units, Model III with three
viscoelastic units and Model IV with four viscoelastic units, whose effectiveness will be examined through comparative experiments. In
each the following simulations, the equilibrium bulk modulus and limiting stretch parameter are taken as K® = 3GPa and I}, = 15,
respectively. The non-equilibrium bulk modulus and limiting stretch parameter are kept unchanged as K¢ = 7.5GPa and (I} ), = 5,
while different values of y* (kPa), u¢(kPa) and 7¢ are taken as shown in Table 2 (s =1, 2, 3, 4). The density and permittivity are given as
p=1.5g/cm® and ¢ = 3.4 x 10"1'F/m, respectively.

The rolled DEA is modeled with ne = n; x ng x n, ANCF solid elements, where n;, n; and n, are the number of elements along axial,
circumferential and radial direction, respectively. By changing the element number in a single direction and keeping other directions
constant, convergence of the predicted displacement at point P for given time (t = 1/3s) is investigated. The applied periodic voltage
with ten cycles is shown in Fig. 12(a) where f = 30Hz and ¢,, = 50kV.

According to Fig. 12(b), enough accuracy of the predicted results is achieved even when small number of elements are adopted in
the axial and radial direction. However, the vertical displacement at point P cannot converge to a stable value until n; > 6 in the
circumferential direction. To ensure the accuracy and explicit more details of the deformed configuration, the rolled DEA is model with
ne = 12 x 20 x 4 elements in the following simulations, as illustrated in Fig. 13.

Moreover, the predicted displacements of the rolled DEA at point P subject to the same loading voltage, as seen in Fig. 12(a), are
also compared with the experimental results in Fig. 14.

Table 2
Material parameters of the rolled DEA.
I i s I G n 13 13 G
Model I 81 80 \ \ \ 400 \ \
Model II 78 30 80 \ \ 300 200 \ \
Model III 75 10 40 80 \ 5000 300 100 \
Model IV 72 10 10 80 80 5000 2000 300 100

12
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Fig. 12. Element convergence along axial, circumferential and radial direction. (a) The loading history. (b) The predicted displacement at point P
for given time (¢t = 1/3s).

(@) (b)

Fig. 13. The discretized elements of the rolled DEA. (a) Front view. (b) Top view.
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Fig. 14. Comparison of the numerical and experimental results of the rolled DEA subject to the cyclic voltage. (a) Displacement as a function of
time. (b) Displacement as a function of electric field. (c) Average displacement of each cycle. (d) Maximum, minimum and average displacement of
Model 1V.

As shown in Fig. 14(a), the displacements at point P of all these models are drifting with time, which is generally explained as the
viscoelastic creep. It is also noticed that the displacement in the loading process differs from the unloading results in each cycle, which
leads to the hysteresis loop shown in Fig. 14(b). For each cycle, xyax and xpi, are taken as the maximum displacement and minimum
displacement at point P and the average displacement is given by X = 0.5(Xmax + Xmin), as illustrated from the results of Model IV in
Fig. 14(d). Considering the repeatable hysteresis loop can only be observed after the first cycle, taking the average displacement of the
second cycle as Xy, the direction of viscoelastic creep can be predicted through a creep parameter k. = X/Xo. According to Fig. 14(c),
the simulation results of Model IV creeps in the same direction as the experiment that the maximum and minimum displacements are
both getting larger with time. However, the predicted results of Model I/1I are simply drifting towards the opposite direction and the
results of Model III only increase at first and then begin to decrease in the rest of time. Through the whole deforming process of the
rolled DEA, the increasing differences between displacements of Model I/II/III and the experimental results are observed in Fig. 14(a).
This phenomenon indicates that only the simulation results of Model IV can predict the experimental results properly, which addresses
the necessity of increasing the number of viscoelastic units.

Adopting the same loading history in Eq. (42), a set of sinusoidal voltages are applied to the rolled DEA, with the magnitude of 25
kV and frequencies ranging from 10 Hz-70 Hz. To investigate the effect of changing frequency, it is assumed that the material pa-
rameters are kept constant when the frequency is different. The predicted axial displacement of the rolled DEA all agree well with the
experiment in Fig. 15(a-h), which further verifies the feasibility of the proposed model under a wide range of frequencies. However, it
is obvious that the area of the hysteresis loop increases as the frequency gets higher, as seen in Fig. 15(b, d, f, h), which indicates more
viscoelastic effect of the DEA in the process of fast vibration.

Fig. 16(a, b) shows a detailed observation of the hysteresis loops for the last cycle, where the frequency increases from 10 Hz to 40
Hz and from 40 Hz to 70 Hz, respectively, which divides the changes in the hysteresis loop into two different stages. Mark two points in
Fig. 16(a, b), including point A where E = 0V/m and point B where E = 2.5 x 10”7V/m. In the first stage, point B moves in the direction
of decreasing displacement as the frequency increases from 10 Hz to 40 Hz, while point A remains in its original position, as shown in
Fig. 16(a). However, in the second stage, the movement of point B is stopped as the frequency keeps increasing from 40 Hz, while point
A begins to move along the direction of increasing displacement, as seen in Fig. 16(b). This phenomenon shows that employing the
loading voltage with different frequencies will make the relationship between the displacement and electric field of the DEA change in
stages.

14
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Fig. 15. The influence of the frequency of loading voltage on dynamic response of point P. (a, c, e, g) Displacement as a function of time. (b, d, f, h)

Displacement as a function of electric field.
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Fig. 16. Displacement at point P as a function of electric field for the last cycle. (a) Frequency increases from 10 Hz to 40 Hz. (b) Frequency in-
creases from 40 Hz to 70 Hz.
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Fig. 17. Strain distribution of the rolled DEA through the first cycle with f = 10, 30, 50, 70 Hz. (a) From the front view at t = 0 s. (b) From the front
view at t = T/2. (¢) From the front view at t = T.
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Fig. 17. (continued).

Strain distribution graph is used to illustrate the three-dimensional deformation of the rolled DEA. In Appendix 5, definition of the
strain is presented. The strain distributions of the rolled DEA through the first cycle with different frequencies are shown in Fig. 17(a-
c). Subject to the excitation voltage, the rolled DEA converts the biaxial expansion into the large deformation along the axial direction.
Without support inside, large strain is exhibited at the waist position of the rolled DEA, as seen in Fig. 17(b). In case that t = T/2, the
overall strain is smaller for the DEA with higher frequency, because more energy is dissipated by viscosity. However, in case that t =T,
the strain residue after one deforming cycle is larger when higher frequency excitation is applied to the system, as shown in Fig. 17(c),
due to the effect of more significant viscoelastic creep. The observed dynamic responses of the rolled DEA further reveal the geometric
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Fig. 18. Dynamic response of the rolled DEA at point P subject to the cyclic voltage. (a) Displacement as a function of time. (b) Displacement as a
function of electric field. (c) Phase portrait. (d) Creep parameter in each cycle.
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nonlinear characteristics and inhomogeneous deformation during the deforming process, emphasizing the importance of three-
dimensional dynamic modeling.

6.3. Effect of viscoelasticity

To further illustrate the effect of considering viscoelasticity, the predicted hyper-viscoelastic results of Model IV are also compared
with the hyperelastic case.

According to Fig. 18(a), smaller displacement is observed for the hyper-viscoelastic case because of the energy dissipation in the
DEA subject to cyclic electrical loads. In Fig. 18(b, d), the DEA neither exhibits the repeatable hysteresis nor the viscoelastic creep
when the viscoelasticity effect is not considered, which is quite different from the hyper-viscoelastic results. Fig. 18(c) depicts that the
phase difference between velocity and displacement of point P is more significant for hyperelastic case, which is related to the
viscoelastic effect as well. Besides, the closed loop of the hyperelastic case in Fig. 18(c) also suggests that deformation of the whole
system is periodic without considering viscosity, which is not true for the hyper-viscoelastic case. Those differences between hyper-
viscoelastic and hyperelastic cases reveal that the viscoelastic effect is non-negligible for investigating the vibration deformation of
a DEA subject to periodic loading voltage.

For both of the hyper-viscoelastic and hyperelastic case, the strain distributions of the rolled DEA through the first cycle are
illustrated in Fig. 19(a-c). Compared with the hyperelastic case, smaller strain is observed for the hyper-viscoelastic case at t = T/2,
because the viscosity leads to the energy dissipation, as seen in Fig. 19(b). However, the strain residue of the hyper-viscoelastic case at
t = T is much larger than the hyperelastic case according to Fig. 19(c), since the system cannot return to the undeformed state after one

deforming cycle due to the viscoelastic creep.
: N
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Fig. 19. Strain distribution of the rolled DEA for the hyper-viscoelastic and hyperelastic case. (a) From the front view at t = 0 s. (b) From the front
view at t = T/2. (c) From the front view at t = T.
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6.4. Effect of geometric parameters

To achieve good actuation properties of a rolled DEA, it is necessary to consider proper geometric parameters in the fabrication
process, such as the thickness, the length and the cylindrical hollow volume at the center. Apparently, different geometric parameters
will have different effects on the working performance of the actuator, meeting different needs for different situations.

Since the loading voltage is applied on the thickness h, its influence on the deformation and viscoelastic behavior of the rolled DEA
is firstly investigated. For this purpose, a series of dynamic simulations are conducted by applying the loading voltage in Eq. (42) with
f = 30Hz and set the magnitude of electric field intensity per unit thickness as ¢,,/h = 2.5 x 107V/m. Three different thickness are
takenash =2mm, h = 8mm and h = 14mm, while other geometric parameters are kept unchanged. It can be seen in Fig. 20 (a, d) that
as h increases, smaller Xp,x and constant Xy,;, are both observed, indicating smaller vibration amplitude for the whole system. It is also
worth noting that the rolled DEA should be fabricated with h no less than 1 mm, since a local minimum of the displacement x occurs at
h €(0, 11, which means larger deformation is no longer guaranteed by overcoming the difficulties of reducing h in the fabrication
process. Furthermore, more significant amount of hysteresis and faster creep speed are also observed in Fig. 20(b, ¢) when smaller h is
achieved, exhibiting more obvious viscoelastic effect of the rolled DEA.

Considering the rolled DEA mainly deforms in the length direction, the influence of changing the length of the whole actuator on its
deforming performance is also analyzed in this section. By applying the loading voltage in Eq. (42) with f = 30Hz and ¢, = 50kV,
three different cases are analyzed: L = 10mm, L = 38mm and L. = 66mm. Contrary to the changes caused by increasing thickness,
larger L leads to greater deformation, more hysteresis and larger X, for the DEA, as seen in Fig. 21(a, b, d). In Fig. 21(d), Xpay in-
creases linearly and monotonically with the increase of L, while X, keeps unchanged first and then decreases to a negative value as
L > 54 mm, which means that the DEA is no longer elongated in the length direction, but shortened when x = xyin. This phenomenon
probably results from the changes in the natural frequency of the rolled DEA when L is extremely large, which also makes the shape of
the hysteresis loop change from a single ring into a couple rings for the case of L = 66 mm in Fig. 21(b). Meanwhile, increasing L also
slows down the creep speed of the displacement, as shown in Fig. 21 (c), which is similar to the effect of increasing h in Fig. 20(d).

At the center of the rolled DEA, the cylindrical hollow volume can be characterized by the radius r of the cross section, whose
influence on the displacement x is studied next. By adopting the loading voltage in Eq. (42) with f = 30Hz and ¢, = 50kV, the
investigations involving three different radius are conducted: r = Omm, r = 28mm and r = 56mm. According to Fig. 22(d), increasing
r achieves smaller X;,,x when r< 16 mm, but has little influence on X.,;, at the same time. However, as r continues to increase from 16
mm, there will be no more significant changes in both Xmax and Xmin. Additionally, less viscoelastic effect of the DEA is exhibited with
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Fig. 20. The influence of thickness on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.
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Fig. 21. The influence of length on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.
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Fig. 22. The influence of radius on dynamic response of point P. (a) Displacement as a function of time. (b) Displacement as a function of electric
field. (c) Creep parameter as a function of time after the second cycle. (d) Maximum and minimum displacement in each cycle.

the increase of r for the case that r< 16 mm, since smaller hysteresis loop and slower creep speed are both observed in Fig. 22(b, c).
Although different radius will have certain influence on the actuation properties of the rolled DEA, its influence is worth considering
only when r< 16 mm.

6.5. Effect of different loading voltages

To provide references for controlling a rolled DEA, this subsection analyzes its dynamic responses subject to different loading
voltages through more numerical cases.

Subject to the loading voltages in Eq. (42) with a constant frequency f = 30Hz and different magnitudes, the viscoelastic behaviors
of the rolled DEA are further predicted for three different cases: ¢,, = 6kV, ¢, = 8kV and ¢, = 10kV. Fig. 23(b) shows that the
deformation is increased with larger ¢,,,, which is because of the increased attraction between opposite charges on the electrodes. As
depicted in Fig. 23(c), all the three hysteresis loops are in the same shape of different sizes, where larger hysteresis loop means more
significant viscoelastic effect. However, taking different ¢, only has slight influence on the viscoelastic creep of the DEA, according to
the coincident curves in Fig. 23(d).

Furthermore, the influence of the voltage patterns with different loading histories on the actuation properties of the rolled DEA are
also studied. Two different loading voltages are applied as shown in Fig. 24(a, b), which are named as VP1 and VP2 from left to right.
Through dynamic simulations, some notable phenomena of the DEA can be observed in the hysteresis loops in Fig. 24(c, d), such as the
memory effects, wiping-out and congruency properties [39]. As seen in Fig. 24(c), the hysteresis shows the memory effects with both
the major loop and the minor loop, depending upon the loading histories with different amplitudes. In addition, the wiping-out
property is also exhibited that the hysteresis output depends upon not only the current input but also the previous dominant input
extrema. In Fig. 24(d), two minor hysteresis loops corresponding to the same input range are congruent inside the major loop, which
reveals the congruency property of the DEA as well. These cases with different voltage patterns further illustrate the ability of the
proposed model to describe the unique material properties of DEAs.
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Fig. 23. The influence of ¢, on dynamic response of point P. (a) The loading history. (b) Displacement as a function of time. (c) Displacement as a
function of electric field. (d) Creep parameter as a function of time after the second cycle.
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Fig. 24. Dynamic response of point P subject to ten cycles of different voltage patterns. (a, b) The loading history. (c, d) Displacement as a function

of time.
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7. Conclusions

In this paper, a numerical framework for dynamic modeling of arbitrary shaped DEAs is proposed, considering both geometric
nonlinearity and viscoelasticity. Different from conventional viscoelastic models, the proposed model combines the ANCF method with
a viscoelastic model adopting multiple viscoelastic units, such that it can be used for modeling of DEAs with complex shapes subject to
cyclic loading voltages. The absolute nodal position vectors and their gradients with respect to material coordinates are used as
generalized coordinates, which can describe the rigid-body motions and large deformations for arbitrary shaped DEAs. The volumetric
locking of incompressible material is effectively avoided by using high-order interpolation functions. Subsequently, the generalized
force vectors and their Jacobians are deduced as well as the mass matrix of the whole system. According to Hamilton’s principle,
dynamic equations of the flexible system are derived, which are solved by applying the generalized o« method.

Firstly, the homogeneous deformations of a DE block are predicted with the proposed model and the numerical results agree well
with the analytical solutions. Secondly, the proposed model is proved to be applicable to the DEAs with complex shapes by investi-
gating the dynamic performance of a three-dimensional torsional DEA. Next, the effectiveness of the proposed model under a wide
frequency range is verified by conducting experiments and dynamic simulations on a rolled DEA with inhomogeneous 3D de-
formations. By increasing the number of viscoelastic units in the viscoelastic model from one to four, good agreement between the
predicted results and the experimental results is achieved. Subsequently, the necessity of considering viscoelastic effect is further
demonstrated through the unique phenomena that are unobservable in the hyper-elastic cases, including the aperiodic deformations,
hysteresis phenomenon, and additional energy dissipation.

Finally, the influence of geometric parameters and different loading voltages on the actuation performances of the rolled DEA is
investigated. According to the results, good actuation properties with large axis displacement and less viscoelastic effect can be
achieved by fabricating the rolled DEA with appropriate geometric parameters. In addition, more notable properties such as the
wiping-out property, the congruency property and the memory effects are also observed by applying different loading histories to the
rolled DEA. The proposed viscoelastic dynamic model will provide further references for the future analysis of the viscoelastic be-
haviors in the DEAs with different shapes.

8. Code availability
The custom codes cannot be shared for this time as they are related to another ongoing study.
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Appendix 1
In the following, the detailed components of the shape function in the material coordinate system are presented as

1
S = E(l +& @ + 1) (1 + GO,

s2 = 5ati(1+ &6+ na)(1+ 50 (EE ~ 1),

b
Siz = ﬁ’?i(l +&E) (1 + ) (1 + &) (i — 1), “3
s = 351+ 681+ )1+ L0 - 1),

fi=Q+&EE+Fnn+El - fizfz - ’7?’72 - gizgz)’
where (&;,7;,¢;) is the local material coordinates of node i (i = 1,2,---,8). Each one of &;, #; and {; is either —1 or 1 depending on the
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specific location of the node.
The partial derivatives of shape function components along axis € are written as

S m)(1+ OIS + (1 -+ EE(),

(s0); = 1 (1 + ) (1 + EOE[E(EE — 1)

(s): =

e (L na) (1 + GO +E8)(2820), "

1
(s) = ggm&(L +mm) (1 + &) 0 = 1),
1
(si)e = 7gC&i(1 +m) (1 +£0)(EE = 1),
(f): = (& — 2&89).

The partial derivatives of shape function components along axis # can also be derived as
1
(s), = 7 (1 + &)X + & Ifi + (1 +nin) (o), ],

1
(s2), = 7g&m(1 +&&) (1 + L) (EE - 1),

1 22
(si3), = 16 I+ &HA + &mlni (™ — 1)] (45)
g (1 +EO(+ LI +na)(2n)

1
(su), = Rgini(l +&HA+ 603 1),
(), = (n; — 2u7n).

The partial derivatives of shape function components along axis ¢ are expressed as

(50): = 3 (1+ GO+ i+ (1+ GO (R,

1
(s0); = 7g&GA + &+ ) (& - 1),

2 i 1 i 1 i ? 2 - 17

(s3), = 1611.6( + &8 + ) (nin® — 1) 46)
1

(i) = 76 (1 + & +mnGlE(E2e = 1))

e L+ 801+ )Gl +60)(2220)
(fi)g = (é:l - 24?0

Appendix 2

The derivation of trace of the elastic components of the right Cauchy strain tensor is given in appendix 2. According to Eq. (14), the
elastic components of the right Cauchy strain tensor can be written as C° = (F*) TG(F*) . Defining C¢ = [C¢,], C = [Cyy], F* = [F};] and
the viscous right Cauchy strain tensor as C* = (F*)"F”, each element of C° can expressed as

Ch = Z Z (F;I)71CW(F;J)71 (47)

K=1 P=1

The trace of C° can be further obtained as
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I = tr(C%) = Cy = (Fy) ' Cuo(Fpy) '
((

= (C¥ ) 1Cu + ( (
(Cly)~ Clz +(C5,)~ 'Con + (C3y)~ 'Cas
(C‘{ )"'Ci3 + (Chg) ' Cas + (Chy) ' Cas

= Co((Fy) ' (Fp) ™)
e ((Fig )I(FIVPYT Crp(Cp) !
Cy) 1Co + Cy)~ 'Ca

Ch) '4.5:8:q. + (Cy) '4;51S,4.
)'4:5:8.9. + (C1,) ' 4.5,5:q,
Cy,) '4;8,S,q, + (C},) ' 4.5,S.q,
)'4;518:q. + (Cl3) ' 4.5;5,4.
+(C5) ' q)8]S.4.-
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(48)

Additionally, the above expression can also be simplified to the form of I! = q'Bq,, where

B =C}'SIS, +C3'SLS, + C3'SLS,
+C5,'8)S, +C,'S)S, + Cy3'S)S,
+ C5'SIS, + C5;' SIS, + Ci3' SIS,

Appendix 3

(49)

The expressions of the derivatives with respect to g, in Eq. (25) and Eq. (26) are stated as

aq,

aq,

A T -
| =8,(1yr;) +S, (1) + S, (Tury)

T
("i> — 2(sTs, + 88, + STS.)q,

¢t _ _,0C
agf " ogf

OF\" oF
_ 1 T _ -1 -1
= <6q§) FooF <0q§>c ’

oF
agk

The derivative matrix of an element in Eq. (30) are expressed as

aC\ ac! o .
<6q§ B ogf 11767%72(163

=[5(,K) $(K) S.(-K)]
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where H=1—(J2; — 3)/I2 and the detailed expressions of the derivatives are written as

o (aI\" - -
—) =S.(S:) — SL(T:S,) + S} (F.S.)

9q. \ 9, (59)
~8,(1xS;) + 5, (TxSy) — S; (TySx).
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0qe aqe B X y y =7
e\ T 2 -1 -1
O (N (TG _(FC (61)
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Appendix 4

The analytical model for homogeneously deforming DEs is given in appendix 4. Subject to electric field along Z direction, the
evolution equation of lateral stretch 4, is written as [38]

i GERT 2

Je = (63)
31, (1 _ 2131;*%;1;%1;473)
T
where 1}, is the viscous stretch obtained from
(%) St U it 7 I 64)
L/ w (l_u) K (1_M)
T Tim
Appendix 5
In appendix 5, the norm of the strain vector of the rolled DEA is defined as
= /(242 +¢2) (65)
where ¢,, €, and ¢, are the normal strains along X, Y and Z directions, respectively, which are given by
1 .T 1 T 1 T
gx:E(rer71)7 gyzi(ryr}’71>7 &z :E(rzrzfl) (66)

Data availability

Data will be made available on request.
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