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Abstract

Voxel structures provide precise control over material distribution at the microscale. The
integrated material-structure design paradigm offers a broader design space than traditional
approaches based solely on geometry or homogeneous materials. A fundamental question in
voxel structures is how to accurately print each voxel with designed sizes while avoiding
interfacial contamination. To address it, we develop a multimaterial DLP 3D printer that
integrates centrifugal forces and liquid rinsing, significantly reducing interfacial contamination,
especially for high-viscosity resins. Additionally, we establish a multiphysics model
considering chemical reactions, diffusion effects, and Gaussian light fields to predict voxel
sizes accurately. This model is applicable to multiple resin types and is used to optimize printing
parameters for individual voxels. By combining the fabrication method and theoretical model,
voxel structures can be fabricated with high precision, facilitating the design of diverse
functional behaviors. Hence, a machine learning-evolution algorithm method is developed to
inversely design voxel distribution across a vast design space, and voxel structures with tailored
buckling behaviors are demonstrated. The proposed fabrication, modeling, and design
framework pave the way for developing voxel structures.

Keywords: voxel structures, multimaterial DLP 3D printing, multiphysics modeling, Python-
assisted FE simulations, ML-EA optimization
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1. Introduction

Voxels, the 3D counterparts of pixels, serve as the fundamental building blocks of 3D objects
[1-3]. Voxel structures consist of discrete programmable voxels, each of which can be
individually tailored at the microscale level in terms of size, shape, and material, allowing for
precise control over macroscale behavior [4-8]. The integrated material-structure design
paradigm offers a broader design space than traditional approaches based solely on geometry
or homogeneous materials, which is promising in metamaterials [9], soft robotics [10,11], and
biomedical fabrication [12]. A fundamental question in voxel structures is how to accurately
print each voxel with designed sizes while avoiding interfacial contamination [13,14].

Many novel multimaterial 3D printing technologies have been reported for fabricating
voxel structures [15], including inkjet-based 3D printing [8,16,17], multi-nozzle direct ink
writing method [3,4], and multimaterial Digital Light Processing (DLP) 3D printing. Among
them, DLP 3D printing offers precise material distribution, complex structural design, and
strong interfacial bonding [18,19]. However, interfacial contamination is a major issue in DLP
3D voxel printing. To reduce it, several approaches have been proposed, such as injecting resins
through microfluidic conduits into a continuous liquid interface [20], dynamic fluidic control
for in-situ resin switching [21,22], removing residual resin by air jetting [19], and centrifugal
force-assisted cleaning [23]. Table 1 summarizes the viscosity range of currently reported
methods for voxel printing. The highest reported resin viscosity is 2.7 Pa-s. However, the ability
to print higher-viscosity resins is also essential, as they offer advantages in material properties
and functionality. Existing methods, however, are not well-suited for such resins and tend to
result in significant interfacial contamination. Therefore, a reliable approach for fabricating
voxel structures using high-viscosity resins remains elusive.

Furthermore, trial-and-error experimentation is insufficient for accurately fabricating small
voxels due to the complexity of the curing process [24,25], which involves chemical reactions
[26], diffusion effects [27], and a non-uniform Gaussian light field [28,29]. This challenge is

particularly critical in voxel structures, where fabrication inaccuracies can lead to structural
2
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failure or material interference. For example, under-curing can lead to structural failures at
voxel interfaces, while over-curing can cause material interference, where one material
occupies the region designated for another. Several theoretical models have been developed to
predict the shape of printing structures, such as polymerization reaction kinetics [26], reaction-
diffusion model [27], multiphysics model considering light field effects [28,29], coupled photo-
chemo-mechanical theoretical framework [30], and spatiotemporal model and optimization of
grayscale DLP printing [31]. For voxel 3D printing, the theoretical model must be generalizable
across different resin types. In addition, diffusion effects play a critical role and should be
accounted for.

Herein, we developed a multimaterial DLP 3D printing platform (Fig. 1(a) and (b)) that
integrates centrifugal force-assisted resin removal and liquid-based rinsing. The combination
of centrifugation and liquid rinsing effectively eliminates cross-contamination between
different materials, even for high-viscosity resins (Fig. 1(c)). A detailed comparison can be
found in Supplementary Materials (Table S2). We developed a multiphysics model that
accounts for chemical reactions, diffusion effects, and Gaussian light fields to accurately predict
voxel sizes. Using this model, we have cbtained the optimal printing parameters for each resin
(Fig. 1(d)). By combining the fabrication technology and theoretical model, voxel structures
can be accurately fabricated, which can facilitate the design of various behaviors [32-37]. We
then developed a Machine Learning-Evolution Algorithm (ML-EA) method to inversely design
the voxel distribution across a vast design space. (Fig. 1(e)) A buckling voxel structure is taken
as an example to achieve optimal force—strain curves, maximizing energy absorption while
minimizing force variations (Fig. 1(f)). The proposed fabrication and modeling framework

paves the way for the design of voxel structures.

Table 1. The viscosity range of currently reported DLP methods for voxel printing.

K i Ch t
This work ;V;Ta“ Wang et al. al e2n (?2; Heetal.,, Yangetal,
B 2022 [38 V 2025 [39 2024 [40
2018 [19] [38] [23] [39] [40]




Journal Pre-proof

Viscosity 0.001

IPa-s ~4.58 0.15 0.001~0.01 0.001~2.7 0.001~1.4 0.001

I. Printing II. Pre-cleaning

Rotating
servo

;

1V. Second c¢leaning III. Rinsing

Material vats

Rinsing vat
UV projector
_ d |
0.8
B
i 0.6
=
e < 0.4
k|
N 0.2
- 10 0 —
| o, 0 5 10 —— o
Non-rinsed Rinsed X axis (10* m) Parameter optimization
e
Mechanical
W%&* M Prediction I behavior ;Target
Training

[Material distribution] — [ Voxel FE simulation ]—»[ Machine learning ] [Evolutionary algorithm]

I Multi-material | Input t Miiterial | Optimization
printing Validation distribution

Fig. 1. Multimaterial DLP 3D printing. (a) Schematic illustration of the multimaterial DLP 3D
printing system. (b) The printing procedure. Step I: image projection and curing; Step II:
centrifugal pre-cleaning in the current vat; Step III: solvent rinsing; Step IV: second centrifugal

cleaning to remove residual resin and solvent. (¢) Comparison of non-rinsed and rinsed
checkerboard samples. (Scale bar: 5 mm) (d) Theoretical model guiding the parameter
optimization to eliminate material interference. (Scale bar: 0.5 mm) (e) The workflow of the
voxel-based FE simulation and ML-EA method.
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2 Results and discussion

2.1 Solvent-assisted multimaterial DLP 3D printing system

A custom multimaterial DLP 3D printing system was developed (Fig. 1(a)). It includes multiple
vats mounted on a horizontal translation stage for automatic vat selection. One vat contains
rinsing agents (ethanol), while the others hold various photopolymer resins for curing. A UV
projector (theoretical optical resolution: 50 um/pixel) projects UV light patterns onto the bottom
of the resin vat to cure each layer. Each vat is equipped with a Perfluoroalkoxy (PFA)
membrane to separate the printed structure from the vat. The printing platform, mounted on a
vertical translation stage, is driven by a rotating servo motor, which ensures both high-speed
rotation for cleaning and precise orientation.

The printing procedure is shown in Fig. 1(b). To print material A, the corresponding resin
vat is positioned at the center, and the platform descends according to the desired thickness.
The slice image for material A is projected to cure the layer (Step I). The platform is then lifted,
separating it from the resin surface, and the rotating motor begins pre-cleaning of residual resin
in the current vat (Step II). The in situ collection of the residual resin largely decreases the resin
cost. Next, the platform is raised above the resin vat, the rinsing vat is centered, and the platform
IS submerged in the rinsing agent (Step III). Low-speed spinning in the rinsing agent ensures
thorough rinsing, followed by high-speed spinning to remove any remaining rinsing agent and
resin (Step IV). The final spin ensures that no rinsing agent interferes with the crosslinking of

subsequent layers. The same procedure is applied when switching to material B.

2.2. The solvent effect on contamination removal

Previous work used high-speed centrifugal force (6000-10,000 rpm) to remove residual
material [23], which is inefficient for high-viscosity resins (>1 Pa-s) and may damage the
printed soft structures. The addition of the rinsing agent addressed these issues. Three rinsing

agents were tested, and 95% ethanol was chosen as the rinsing agent in this work (Fig. S1 and
5



Journal Pre-proof

Fig. S2). The cleaning effectiveness of the rinsing agent was evaluated for three resins with
different viscosities: VeroBlack (0.15 Pa:-s), F69 (1.40 Pa:-s), and EAUD (4.58 Pa-s). Resin
thicknesses after rotation (t> — t1) with and without rinsing were measured (Fig. 2(a) and (b)).
Note that the real printing platform in the DLP system is down-facing (Fig. 1(a)), while the
setup in Fig. 2(a) is designed for resin thickness characterization. The platform is oriented
upward in this test to enable controlled dispensing and measurement of residual resin, and
gravity effects are negligible compared with centrifugal acceleration.

The total rotational time was set to 16 s in all tests. Residual thicknesses below 10 pm
were considered acceptable with no significant cross-contamination. As shown in Fig. 2(b), the
non-rinsed samples required higher speeds: 5000 rpm for VeroBlack and 8000 rpm for F69. In
contrast, the rinsed samples achieved similar results at a miuch lower speed (3000 rpm for both
resins), with nearly 100% contamination removal at 6000 rpm. For EAUD, the residual
thickness was 26 um even at 10,000 rpm without rinsing, making it unsuitable for multimaterial

printing. However, rinsing reduced the residual thickness to nearly zero.

a b
\ rI;—'——d——l ————— SLLLT A 0.15P
| on-rinsed samples | el () a's
é | " | 80+ -4- 1.40 Pa‘s
¢ € 60
. | L 290
Resin 16s o
L i e G G ol i b e, i, S, s, Y, S ) 0
rE'_E__l —————————————— Ll A 240
| Inseda samples 'l | -340
| & S | & 201
|$ * SN SNSRI | :
[ - | 0 &% -'--ff*f--’--;*—-0——*—+~ :
7 ; = 3000 6000 9000
Experimental procedure  (rpm)
G d f
2
=t
=
20
8
o
2
=
Q
~
0 s 10 15
. F69 VeroClear Non-rinsed sample Rinsed sample Distance (mm)

Fig. 2. Effectiveness of solvent rinsing in removing contamination. (a) Experimental procedure
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for contamination comparison. (b) Residual resin thickness as a function of rotational speed for
three resins with varying viscosities (Red lines: non-rinsed samples; Blue lines: rinsed samples).
(c) A two-material checkerboard pattern designed for contamination comparison. (d),(e)
Snapshots of the two-material printed samples without and with the rinsing step. (f) Relative
brightness profile along lines L1 and L». (Scale bar: 5 mm)

Two-material checkerboards with a thickness of 1.5 mm were 3D printed using F69 (black)
and VeroClear (transparent) for comparison (Fig. 2(c)). The rotation speed was set to 6000 rpm.
Samples without rinsing showed obvious contamination (Fig. 2(d)), with the transparent areas
heavily contaminated by the black resin. In contrast, rinsed samples displayed no visible
contamination in the transparent areas (Fig. 2(e)). Quantitative analysis of relative brightness
(RB) values was performed to assess contamination levels. The RB values along lines L; and
L also show sharp boundaries between the two materials after rinsing (Fig. 2(f)). The RB curve
of the rinsed sample showed an apparent drop at the material interface compared to the non-

rinsed one, indicating a clear interfacial boundary.

2.3. Theoretical model for printing size estimation

Although solvent-assisted multimaterial DLP 3D printing effectively eliminates cross-
contamination, the accurate assignment of voxels requires the development of theoretical
models that can predict the voxel size. A theoretical model considering chemical reactions,
diffusion effects, and Gaussian light fields was developed.

The polymerization process includes complex physicochemical reactions. When a
photoinitiator. (Pl) absorbs photons, it decomposes into two active radicals R* at a
decomposition rate of Kq. The symbol * represents the active site. These radicals react with
monomers M at an initiation rate of Kj, forming active monomers RM*. These active monomers
propagate polymer chains at a rate of K, and chain termination occurs at a rate of K [26,41,42].
Oxygen involvement is neglected due to the absence of an oxygen-permeable window. The

reaction can be summarized as

Pl—% 5 2R", (1)
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R'+M —sRM, (2)
RM +M—<>RM’,,, ©)
RM +RM, —“>RM_, R/RM, +RM . (4)

Considering chemical species diffusion, a photopolymerization kinetics model is

developed:
%C _pvic,-K,Cl, (5)
ot
agtR =D, V°C, +2K,C,1 -KC,,C,, (6)
OCou = Diy VZCRM +KiCyCr — KICSM ) (7
oC,,

CuCe- (8)

P D, V°C,, — K,.CuCiun — K
The variables C;, Cr, Crm, and Cwm represent the concentration of the photoinitiators,
radicals, active monomers, and monomers, respectively. The variable diffusion coefficient D;

(4 =1, R, RM, M) is defined as [27]

1 1-¢ ¢
= Sligua T soiid * 9)
D;(t) D;™ D}

where D;™" and D{*" represent the diffusion coefficients of specific species in the liquid

phase and solid phase. The degree of conversion (DoC) ¢ is expressed as the reduction of

monomers
C
=1- M
¢ C.(t=0) (10)
The light field I is the superposition of all projected pixels
1(X,y,2) =D 1,(xY,2), (11)
i=1

where |; is the light intensity distribution projected from each pixel. It follows the Gaussian

distribution [24,28,31]
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(6%’ (- yo)z} 12

23

l.(X,y,z=0) = Ioexp{

where lo is the peak light intensity at the center (xo, Yo). ax is the waist radius of the Gaussian
beam, representing the radius where the light intensity drops to lo/e? (e is Euler’s number).

The light is propagated along the Z-axis. Thus,

%(Z) - (2, (13)
VA

where x is the overall absorption coefficient, incorporating the effects of photoinitiators, cured

polymers, uncured monomers, and photoabsorbers as
1= G+ U+ Ly Dy (14)
Here, C, is the concentration of Pl, and wag is the weight ratio of photoabsorbers. The 4,

up, ups are the absorption coefficients of initiators, cured polymers, and photoabsorbers,

respectively. The parameters are listed in Table 2.

Table 2. The parameters used in light intensity calculation.

Name Value Definition Units
lo 198.7 Peak light intensity value W/m?
an 42x10°  Measured beam waist radius m
7 45.83 Absorption coefficient of photoinitiators [27] m2/mol
P 1.8x10% Absorption coefficient of polymers [27] 1/m

A custom MATLAB script was developed to simulate the photopolymerization process.
Fig. 3(a) and (b) show the simulated ¢ distribution of a voxel with 10 pixels x 10 pixels at the
focal plane with curing times of 0.5 s and 1.5 s. The black contours show the position where
¢ reaches the critical value of DoC ¢. Here, ¢ is set to 0.15 [31]. The cured width is defined
as the distance between two opposite sides of the contour. Fig. 3(d) and (e) show the simulated
isosurface of ¢= ¢ with exposure time of 0.5 s and 1.5 s, respectively. The cured depth is

defined as the maximum z-coordinate of the isosurface.

2.4. Model-guided elimination of material interference
9
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The theoretical model was validated by experiments using four materials: VeroClear,
TEAA, FT, and F69. Fig. 3(e) and (f) compare the theoretical and experimental depth and width
as functions of the exposure time. The cured width is measured by printing blocks with 10
pixels x 10 pixels, while the cured depth is measured by printing overhanging structures (Fig.
S3). The reaction coefficients Ka (a = d, i, p, t) and diffusion coefficients were obtained by
fitting the model to experimental width and depth. The fitting of the reaction—diffusion
coefficients to the experimental data was performed manually using the Least Squares Method.
For each material, the key parameters, K, (a = d, i, p, t) and diffusion coefficient D, were
assigned with an initial value and bounded ranges. The sum of squared differences between the
simulated and experimental results was computed for both the exposure time—width and
exposure time—height curves. The parameters were iteratively adjusted until this sum reached
its minimum value, ensuring optimal agreement between the model and experiment.

The model accurately predicts the sizes of printed voxels. As exposure time increases, both
depth and width grow, but different resins exhibit varying trends. For example, FT and F69
show a relatively flat increase in depth but a sharp increase in width with exposure time. In
contrast, VeroClear and TEAA exhibit larger depth increases with relatively less increase in
width compared to FT and F69. The simulated results for all materials can be found in Movie
S1.

During the multimaterial voxel printing, we observed a common printing error: material
interference, where one material occupies the region designated for another. For example, a
two-material pattern with intersecting lines (5 pixels wide, VeroBlack) and squares (20 x 20
pixels, VeroBlue) was printed using the same parameters (0.7 seconds of exposure per layer).
The microscopic image of the printed sample shows the substantial overlap of square and line
areas (Fig. 3(h)). The dashed box highlights the intended square dimensions, but the printed
squares are much larger, occupying the space for the line areas. Thus, the material interfaces
remain blurred even after rinsing. This interference leads to substantial differences in both

structure and material volume fraction compared to the design. The phenomenon results from

10
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different evolutions of the printing sizes of VeroBlack and VeroBlue under the same printing
parameters (Fig. 3(j) and (Kk)).

Based on the theoretical model, the optimized printing parameters were selected. The ideal
exposure time is determined by identifying the intersection of the theoretical curves with the
target width (500 um for 10-pixel wide features) (Fig. 3(c) and (j)). The corresponding cured
depth is then calculated using these exposure times (Fig. 3(f) and (k)). Table 3 lists optimized
voxel printing parameters. The layer thicknesses of the VeroBlue and VeroBlack are set to 50
um to ensure strong bonding. A snapshot and microscopic image of the printed sample using
the optimized printing parameters are shown in Fig. 3(i), exhibiting clear material interface
boundaries. It is worth mentioning that the coupled Gaussian field—reaction—diffusion
framework is based on fundamental free-radical photopolymerization Kinetics incorporating
Beer—Lambert optical attenuation and short-time diffusion effects. Therefore, it is not limited
to a specific resin system. In this study, the model is validated using six different photopolymer
materials, and the predicted voxel dimensions showed good agreement with experimental
measurements. Hence, the proposed model is expected to be universally applicable to other

material systems that follow similar photopolymerization mechanisms.

11
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Fig. 3. Theoretical model for optimizing printing parameters. (a), (b) The simulated DoC
distribution of TEAA at the focal plane (z = 0) with an exposure time of 0.5 s and 1.5 s,
respectively. The black contours show the location of DoC ¢ = ¢.. (c) The comparison between
the simulated (solid lines) and experimental (markers) width for four materials. (d), (e) The
simulated isosurface of ¢ = @ with exposure time of 0.5 s and 1.5 s, respectively. (f) The
comparison between the simulated and experimental depth for four materials. (g) The designed
pattern featuring a minimal size of 5 px. (h), (i) The snapshot and microscopic image of the
printed sample before and after parameter optimization, respectively. The dashed boxes show
the desired dimension. (Scale bar: upper part 2 mm, lower part 0.5 mm) (j), (k) The comparison
between the simulated (solid lines) and experimental (markers) width and depth for VeroBlack

and VeroBlue.
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Table 3. The optimized printing parameters for various materials.

Materials VeroClear FT F69 TEAA  VeroBlue VeroBlack

Time (s) 0.68 0.62 0.3 0.77 0.3 0.44

Maximum layer

. 411 217 84 814 180 101
thickness (um)

2.5. Voxel composite material

The developed rotation-rinsing printing method, coupled with model-based exposure
parameters optimization, overcomes interfacial contamination and enables high-fidelity voxel
printing with clear boundaries. The mechanical properties of the voxel structures were then
analyzed using a developed voxel-based Python-assisted FE simulation framework. FE
simulations were conducted in Abaqus 2020 (Dassault Systems, Waltham, MA, USA). Home-
written Python scripts partition the structures using desired voxel sizes, allocate the material
according to the desired input, and perform calculations and post-processing.

Voxel composite cuboids (32 mm x 6 mm x 1 mm) were designed to validate the FE
simulation framework (Fig. 4(a)). The voxels were randomly allocated, with each unit
measuring 0.5 mm X% 0.5 mm and a height of 100 um. Three materials with different Young’s
moduli were chosen to print the voxel cuboids: VeroClear (1.1 GPa), FT (1.4 MPa), and TEAA
(0.4 MPa) (Fig. 4(d)). Two rigid-soft material combinations: FT-TEAA pair, and VeroClear-
FT pair were printed with various ¢ (volume ratios of rigid material) ranging from 0% to 100%.
The snapshots and microscopic images of the two pairs can be found in Fig. S4, showing
reliable printing quality. Fig. 4(b) and 4(c) show the uniaxial tensile stress—strain curves for the
voxel cuboids made from the FT-TEAA pair, and the VeroClear-FT pair, respectively. Voxel-
based simulations were conducted, and the material distributions in the simulations are shown
in Fig. S4. The FE-simulated stress—strain curves show good agreement with the experimental
curves for the FT-TEAA pair. The discrepancy between the experimental and simulated curves

in Fig. 4(c) mainly arises from local fractures that occur during the uniaxial tensile tests, which

13
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were not considered in the FE simulations. Local fractures tend to initiate at regions with large
modulus mismatch or imperfect interfacial bonding between adjacent voxels of different
materials (Fig. S6). Consequently, the experimental stress values are slightly lower than the
simulated ones, particularly beyond the elastic regime. The corresponding elastic moduli E,
calculated from the stress—strain data, are shown in Fig. 4(e) and (f). The elastic moduli of the
composite structures vary continuously between the moduli of the rigid and elastic materials,
which span four orders of magnitude.

To quantitatively evaluate the mesh sensitivity of the Python-assisted FE framework,
simulations were performed with different mesh refinement levels with n = [1, 2, 4, 5, 6, 8].
Given the voxel size of 0.5 mm, the corresponding mesh sizes were 0.5, 0.25, 0.125, 0.1, 0.083,
and 0.0625 mm. The relationship between voxel size and mesh size is illustrated in Fig. S5(a).
The simulated stress-strain curves in Fig. S5(b) exhibit enly minor variations among different
mesh sizes. The stress values at 100% strain are summarized in Fig. S5(c). The stress converges
rapidly when n is larger than 4. The computational time rises from approximately 10 minutes
for n = 5 to about 2 hours for n = 8. The dashed lines in Fig. S5(c) represent the 0.5% error
threshold, indicating that the simulations with n > 5 achieve sufficient accuracy. Therefore, n =
5 was selected as an optimal balance between computational efficiency and numerical accuracy.

The transition zone of the rigid-soft material was analyzed using three different voxel
distributions: a direct connection (referred to as "Simple™), a uniform region with ¢ = 50%
(referred to as "Uniform™), and a graded region where ¢- gradually ranges from 0% to 100%
(referred to as "Graded"). The sample slice image and the microscopic images are shown in Fig.
4(9), (i), (k). VeroBlack (black) and TEAA (transparent) were used. It is worth mentioning that
the differences in the local color are caused by the different distribution of the black voxel along
the z-axis rather than contamination. Snapshots show that the boundaries between individual
voxels remain clear, even with small voxel sizes. Fig. 4(m) shows the experimental and FE-
simulated tensile stress—strain curves for the voxel composite cuboids. The simulated and

experimental deformed shapes demonstrate good agreement (Fig. 4(h), (j), (1)).

14
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Fig. 4. Python-assisted FE simulation guided design for voxel composites. (a) Schematic
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composites VeroClear-FT and FT-TEAA. (d) The Young’s moduli of the chosen materials (¢),
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composites VeroClear-FT and FT-TEAA. (g), (i), (k) Design and microscopic images of two-
material dogbone samples with 3 types of transitional regions: simple, uniform, and graded.
(Scale bar: 1.5 mm). (h), (j), (I) Experimental and simulated deformation of the dogbone
samples before fracture. (Scale bar: 5 mm) (m) Experimental and simulated tensile stress—
strain curves of samples with varying transitional designs. (n) Toughness comparison for the
three transitional designs.

Note that although the volume fraction is identical for all three structures, their mechanical
behaviors differ significantly due to the voxel distributions. Experimental toughness, calculated
from the areas under the stress—strain curves, is shown in Fig. 4(n). The "Graded" design
exhibited the highest toughness among the three samples, demonstrating that gradual transitions
in material properties enhance the overall mechanical performance of the rigid-soft connection.
A snapshot of the fractured sample (Fig. S4) shows that the fracture occurs away from the

material interface, indicating strong interface bonding.

2.6. An ML-EA design method for multimaterial controllable buckling structures

The validated Python-assisted FE simulation framework was then used to inversely design
mechanical properties using voxel distributions. Conventional optimization methods would
face tremendous computational costs when dealing with the vast design space of voxels
[33,43,44]. Here, an ML-EA design method was developed. A typical buckling structure,
consisting of three hinges and two blocks, was taken as an example (Fig. 5(a)). Each hinge has
a uniform width t = 4 mm and height h = 8 mm, and the overall height and thickness of the
structureare L =75 mmand T = 2 mm, respectively. Upon compression in the vertical direction,
the blocks rotate due to the buckling instability of the hinges.

Two materials, VEAA and F69, were used. VEAA exhibits elastoplastic behavior, with an
elastic modulus of 200 MPa, a yield stress of 8 MPa, and a tangent modulus of 16 MPa after
yielding (Fig. S7). F69 demonstrates hyperelastic behavior, described using a two-parameter
Mooney-Rivlin model with C1o = 0.1215 MPa and Co1 = 0.9586 MPa. Fig. 5(b) shows the
experimental (solid curves) and FE simulated (dashed curves) force—strain (u/L) curves under

compression for the structures made from VEAA and F69, respectively. The two different
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materials show distinct behaviors: for the hyperelastic F69 structure, the post-buckling stiffness
remains positive, leading to a continuing increase in force. In contrast, buckling occurs near the
yield point for the elastoplastic VEAA structure, causing a sharp load decrease concomitant
with buckling [45]. The simulated and experimental deformations of the F69 structure are
compared in Fig. 5(c).

Previous work has explored the buckling behaviors of similar structures. Here, we
demonstrate that mechanical behaviors can be controlled by designing voxel distributions.
Three parameters were used to characterize the force—strain curves: the force F1 at buckling,
the force F2 at a compression strain of 10%, and the area A under the force—strain curves (Fig.
5(b)). The ML-EA workflow is illustrated in Fig. 5(e). First, a dataset is generated for the ML
model. The buckling structure is partitioned into 26 areas (Fig. 5(d)), each assigned a code 0 or
1 to represent the two materials. By varying voxel combinations, various force—strain curves
can be designed. The input consists of randomly generated arrays (1x26 in size, with 4000
samples) representing material voxel combinations. The Python script reads the arrays,
allocates materials accordingly, and automatically computes the corresponding force—strain
curves via FE simulation. The outputs are constructed by extracting three features (F1, F2, and
energy absorption) from each curve.

Next, an ANN-based ML model is established to learn the mapping between material
distribution and mechanical response and to function as a surrogate model. The ML model
comprises two feedforward layers: a hidden layer of 50 neurons and a linear regression layer.
The Bayesian regularization is used in training the ML model. The mean squared error (MSE)
functions as the loss function and converges to a steady state, as shown in Fig. 5(g). A high
coefficient of determination (R? = 0.9993) is observed in Fig. 5(h), showing that the developed
ML model can accurately capture the underlying pattern of the dataset.

Lastly, the EA is employed to optimize the material distribution for achieving the desired
mechanical performance. The optimization begins by generating a generation of 150
individuals, where each individual corresponds to a distinct material distribution. The

generation evolves through selection, crossover, and mutation after a customized fitness
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function evaluates each individual. For energy absorption applications, the desired force—strain
curves generally require a small force change between F1 and F,, while maximizing the total

absorbed energy (A). Thus, the fitness function value (Fval) is formulated as:
Fval =[(F, - F,)/a]’ —cA, (15)

here, a=3, b =5 and ¢ = 100. Fig. 5(i) shows that the Fval decreases when the generation index
grows. The optimization process stops when the change in Fval reaches the function tolerance
10, The computational time of a single FE simulation is approximately 2 minutes. Thus, a
conventional optimization process requiring 100 iterations would take about 200 minutes in
total. In contrast, the training of the machine learning model and the subsequent evolutionary
optimization process takes around 2.5 minutes, which is around 80 times faster than
conventional FE-based optimization.

The parameters a, b, and ¢ were introduced to normalize the force difference and balance
two competing objectives: minimizing force difference (£1—F2) and maximizing the area 4 of
the force—strain curve. The constant a = 3-specifies that the targeted force difference should be
less than 3N. The constants b and ¢ determine the weighting of the two terms. To justify these
parameters, a systematic sensitivity analysis was performed by varying b from 2 to 8 and ¢ from
20 to 200. For each parameter pair (b, c), the evolutionary algorithm was performed using the
trained neural network. The resulting optimized data (70 data points, marked as red stars) were
compared with the full database of simulated data (3000 data points, marked as blue circles) in
the (F1—F>, A) space (Fig. S8). The optimized data achieve a large area 4 while restricting the
force differenices, which is challenging to achieve by manually guessing the material
distribution. On the other hand, the optimized results exhibit only minor variations across the
tested range, confirming the robustness of the fitness function.

Although the optimized data are concentrated within a narrow region, several distinct
material distributions emerged. The 70 parameter pairs generate 4 unique material distributions
(Table S1), which were further analyzed via FE simulation. The resulting force-strain curves

(Fig. S9) show similar profiles, and all achieve the desired performance. The FE simulated
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force—strain curves are shown in Fig. 5(j) for the material array in the 1%, 10", 50", and 100"
generations. The multimaterial buckling structure is printed using the optimal material
distribution. The experimental curve agrees well with the FE simulated curve before 5% strain.
The snapshots of the simulated and experimental deformations are shown in Fig. 5(k) and agree
well. The decrease in the experimental force after 5% strain may be caused by the detachment

of the top left beam (Fig. 5(k)).
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Fig. 5. Design method of the multimaterial controllable buckling structure using a machine
learning model and evolutionary algorithm (ML-EA). (a) The schematic illustration of the
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strain curves of the uniaxial compression test using single material VEAA and F69. (c) The
comparison between the experimental and simulated buckling deformation of the F69 case. (d)
Schematic illustration of the material distribution and the index of the material distribution array.
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(e) The training process and the workflow of the optimization process. (f) The architecture of
the ANN-based ML model. (g) The MSE function of the ML model during the training process.
(h) The linear regression analysis of the ML model. The coefficient of determination (R*> =
0.9993) shows good prediction capability. (i) The evolution of Fval during the EA-based
optimization process. (j) The FE simulated results using the optimized results in the 1%, 10*,
50" and 100" generations and the experimental result. (k) The snapshots of the simulated and
experimental deformations using the optimized material distribution.

3. Materials and methods

UV curable resin: The commercial photo-curable polymer resins include VeroBlue (rigid blue
polymer, Stratasys, USA), VeroBlack (rigid black polymer, Stratasys, USA), VeroClear (rigid
transparent polymer, Stratasys, USA), F69 (soft black polymer, Flashshore, China), TangoPlus
(soft translucent polymer, Stratasys, USA). The mixed commercial photo-curable polymer
resins include FT, VEAA, and TEAA. The FT is a mixture of F69 and TangoPlus with a mass
ratio of 1:1. The mixture VEAA consists of 80 wi% VeroClear and 20 wt% EAA (epoxy
aliphatic acrylate, Ebecryl 113, Allnex, USA). 0.02 wt% Sudan | is added to the VEAA mixture.
The mixture TEAA consists of 60 wit% Tango and 40 wt% EAA. The mixtures mentioned
above are magnetically stirred at 40 °C for at least 6 hours after mixing all the ingredients. The
viscous EAUD hybrid resin consists of 60 wt% EAA and 40 wt% AUD (Ebecryl 8413, Allnex,
USA). 2 wt% of Irgacure 819 (Sigma-Aldrich, USA) is added to the mixture as the

photoinitiator.

Multimaterial DLP printing system: The linear translation stage LTS300 (ThorLabs, USA)
moves the printing platform. The servo motor EC-i 52 (Maxon, Germany) is responsible for
spinning the platform to remove the residual resin and rinsing agent. A DLP projector PRO6500
(Wintech, China) is used to project the corresponding slice image to the bottom of the resin

tank. The PFA membranes are purchased from local retailers.

Resin thickness measurement: Experiments were conducted using a KW-4C spin coater

(SETCAS, China) with facing-up circular acrylic substrates (36 mm diameter) to enable
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accurate dosage. The base thickness of the substrates (“t1””) was measured with a micrometer
screw gauge (accuracy: 1 um). For each test, 1 mL of resin was dispensed onto the substrate. 5
mL of 95% ethanol was dispensed onto the plate for the rinsing case. The rotational speed varied
from 3000 to 10000 rpm, and the acceleration was 3000 rpm/s for all speeds. Two protocols
were used: 1) 16s of spinning for the non-rinsed protocol. 2) 8s of spinning, dispensing ethanol,
another 8s of spinning (total 16s). No immersion bath was employed in our experiments, so the
immersion depth is not applicable. After spinning, the residual film was fixed using a 405 nm
UV exposure for 3 minutes. The thicknesses of substrate and the residual resin were measured

(“t2”), and the residual resin thickness was calculated (“t2 — t1”).

FE simulations: For the FE simulation in Fig. 4, 3D stress conditions and hybrid tetrahedral
elements (C3D4H) are used. The mesh size equaled the voxel size divided by 5 (0.1 mm). For
FE simulation in Fig. 5, plane stress conditions and modified quadratic triangular elements
(CPS6M) are used. The mesh size equaled the voxel size divided by 5 (0.4 mm). The static step

is used, and a displacement imperfection is introduced (0.1 mm).

Uniaxial tensile and compression tests: In the tensile tests of Fig. 4, voxel composites were
printed with hard material at the ends for clamping. The uniaxial tensile tests were conducted
on a universal material testing machine (Instron 68SC-2, USA) at room temperature with a
speed of 10 mm/min. For the compression tests in Fig. 5, an acrylic slot lubricated with silicone
oil was used to restrict bending directions. The bottom bar of the structures was clamped, while

the top bar was free and was compressed by another acrylic plate.

Relative brightness calculation: RB was calculated using the ITU BT.709 standard: RB =
0.299R + 0.587G + 0.114B, where R, G, and B are RGB values read from the images. The
average RB values of the black area for the two samples are both around 0.07, indicating that
the two images have the same exposure value without modification.

4. Conclusion
22
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In this work, a multimaterial DLP 3D printing platform is developed that integrates centrifugal
force-assisted resin removal and liquid-based rinsing to eliminate cross-contamination between
different materials. This approach enables the fabrication of multimaterial voxel structures even
for high-viscosity materials. A multiphysics model considering chemical reactions, diffusion
effects, and Gaussian light fields is proposed to accurately predict voxel sizes. Using the
theoretical model, optimal printing parameters for each resin are predicted to avoid under-
curing-induced structural failure and over-curing-induced material interference. By combining
the fabrication technology and theoretical model, voxel structures can be accurately fabricated,
which can facilitate the design of various behaviors. A Python-assisted FE simulation combined
with an ML-EA method is presented to inversely design the voxel distribution across a vast
design space. A buckling structure is taken as an example to design optimal stress—strain curves
for energy absorption. This work paves the way for the fabrication, modeling, and design of

3D-printed voxel structures.
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