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Abstract 

Voxel structures provide precise control over material distribution at the microscale. The 

integrated material–structure design paradigm offers a broader design space than traditional 

approaches based solely on geometry or homogeneous materials. A fundamental question in 

voxel structures is how to accurately print each voxel with designed sizes while avoiding 

interfacial contamination. To address it, we develop a multimaterial DLP 3D printer that 

integrates centrifugal forces and liquid rinsing, significantly reducing interfacial contamination, 

especially for high-viscosity resins. Additionally, we establish a multiphysics model 

considering chemical reactions, diffusion effects, and Gaussian light fields to predict voxel 

sizes accurately. This model is applicable to multiple resin types and is used to optimize printing 

parameters for individual voxels. By combining the fabrication method and theoretical model, 

voxel structures can be fabricated with high precision, facilitating the design of diverse 

functional behaviors. Hence, a machine learning-evolution algorithm method is developed to 

inversely design voxel distribution across a vast design space, and voxel structures with tailored 

buckling behaviors are demonstrated. The proposed fabrication, modeling, and design 

framework pave the way for developing voxel structures.  

 

Keywords: voxel structures, multimaterial DLP 3D printing, multiphysics modeling, Python-

assisted FE simulations, ML-EA optimization  
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1. Introduction 

Voxels, the 3D counterparts of pixels, serve as the fundamental building blocks of 3D objects 

[1-3]. Voxel structures consist of discrete programmable voxels, each of which can be 

individually tailored at the microscale level in terms of size, shape, and material, allowing for 

precise control over macroscale behavior [4-8]. The integrated material–structure design 

paradigm offers a broader design space than traditional approaches based solely on geometry 

or homogeneous materials, which is promising in metamaterials [9], soft robotics [10,11], and 

biomedical fabrication [12]. A fundamental question in voxel structures is how to accurately 

print each voxel with designed sizes while avoiding interfacial contamination [13,14].  

Many novel multimaterial 3D printing technologies have been reported for fabricating 

voxel structures [15], including inkjet-based 3D printing [8,16,17], multi-nozzle direct ink 

writing method [3,4], and multimaterial Digital Light Processing (DLP) 3D printing. Among 

them, DLP 3D printing offers precise material distribution, complex structural design, and 

strong interfacial bonding [18,19]. However, interfacial contamination is a major issue in DLP 

3D voxel printing. To reduce it, several approaches have been proposed, such as injecting resins 

through microfluidic conduits into a continuous liquid interface [20], dynamic fluidic control 

for in-situ resin switching [21,22], removing residual resin by air jetting [19], and centrifugal 

force-assisted cleaning [23]. Table 1 summarizes the viscosity range of currently reported 

methods for voxel printing. The highest reported resin viscosity is 2.7 Pa·s. However, the ability 

to print higher-viscosity resins is also essential, as they offer advantages in material properties 

and functionality. Existing methods, however, are not well-suited for such resins and tend to 

result in significant interfacial contamination. Therefore, a reliable approach for fabricating 

voxel structures using high-viscosity resins remains elusive. 

Furthermore, trial-and-error experimentation is insufficient for accurately fabricating small 

voxels due to the complexity of the curing process [24,25], which involves chemical reactions 

[26], diffusion effects [27], and a non-uniform Gaussian light field [28,29]. This challenge is 

particularly critical in voxel structures, where fabrication inaccuracies can lead to structural 
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failure or material interference. For example, under-curing can lead to structural failures at 

voxel interfaces, while over-curing can cause material interference, where one material 

occupies the region designated for another. Several theoretical models have been developed to 

predict the shape of printing structures, such as polymerization reaction kinetics [26], reaction-

diffusion model [27], multiphysics model considering light field effects [28,29], coupled photo-

chemo-mechanical theoretical framework [30], and spatiotemporal model and optimization of 

grayscale DLP printing [31]. For voxel 3D printing, the theoretical model must be generalizable 

across different resin types. In addition, diffusion effects play a critical role and should be 

accounted for. 

Herein, we developed a multimaterial DLP 3D printing platform (Fig. 1(a) and (b)) that 

integrates centrifugal force-assisted resin removal and liquid-based rinsing. The combination 

of centrifugation and liquid rinsing effectively eliminates cross-contamination between 

different materials, even for high-viscosity resins (Fig. 1(c)). A detailed comparison can be 

found in Supplementary Materials (Table S2). We developed a multiphysics model that 

accounts for chemical reactions, diffusion effects, and Gaussian light fields to accurately predict 

voxel sizes. Using this model, we have obtained the optimal printing parameters for each resin 

(Fig. 1(d)). By combining the fabrication technology and theoretical model, voxel structures 

can be accurately fabricated, which can facilitate the design of various behaviors [32-37]. We 

then developed a Machine Learning-Evolution Algorithm (ML-EA) method to inversely design 

the voxel distribution across a vast design space. (Fig. 1(e)) A buckling voxel structure is taken 

as an example to achieve optimal force–strain curves, maximizing energy absorption while 

minimizing force variations (Fig. 1(f)). The proposed fabrication and modeling framework 

paves the way for the design of voxel structures. 

 

Table 1. The viscosity range of currently reported DLP methods for voxel printing. 

 This work 

Kowsari 

et al., 

2018 [19] 

Wang et al. 

2022 [38] 

Cheng et 

al.,2022 

[23] 

He et al., 

2025 [39] 

Yang et al., 

2024 [40] 
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Viscosity 

/Pa·s 
0.001~4.58 0.15 0.001~0.01 0.001~2.7 0.001~1.4 0.001 

 

 

Fig. 1. Multimaterial DLP 3D printing. (a) Schematic illustration of the multimaterial DLP 3D 

printing system. (b) The printing procedure. Step Ⅰ: image projection and curing; Step Ⅱ: 

centrifugal pre-cleaning in the current vat; Step Ⅲ: solvent rinsing; Step Ⅳ: second centrifugal 

cleaning to remove residual resin and solvent. (c) Comparison of non-rinsed and rinsed 

checkerboard samples. (Scale bar: 5 mm) (d) Theoretical model guiding the parameter 

optimization to eliminate material interference. (Scale bar: 0.5 mm) (e) The workflow of the 

voxel-based FE simulation and ML-EA method.  
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2 Results and discussion 

2.1 Solvent-assisted multimaterial DLP 3D printing system 

A custom multimaterial DLP 3D printing system was developed (Fig. 1(a)). It includes multiple 

vats mounted on a horizontal translation stage for automatic vat selection. One vat contains 

rinsing agents (ethanol), while the others hold various photopolymer resins for curing. A UV 

projector (theoretical optical resolution: 50 μm/pixel) projects UV light patterns onto the bottom 

of the resin vat to cure each layer. Each vat is equipped with a Perfluoroalkoxy (PFA) 

membrane to separate the printed structure from the vat. The printing platform, mounted on a 

vertical translation stage, is driven by a rotating servo motor, which ensures both high-speed 

rotation for cleaning and precise orientation. 

The printing procedure is shown in Fig. 1(b). To print material A, the corresponding resin 

vat is positioned at the center, and the platform descends according to the desired thickness. 

The slice image for material A is projected to cure the layer (Step Ⅰ). The platform is then lifted, 

separating it from the resin surface, and the rotating motor begins pre-cleaning of residual resin 

in the current vat (Step Ⅱ). The in situ collection of the residual resin largely decreases the resin 

cost. Next, the platform is raised above the resin vat, the rinsing vat is centered, and the platform 

is submerged in the rinsing agent (Step Ⅲ). Low-speed spinning in the rinsing agent ensures 

thorough rinsing, followed by high-speed spinning to remove any remaining rinsing agent and 

resin (Step Ⅳ). The final spin ensures that no rinsing agent interferes with the crosslinking of 

subsequent layers. The same procedure is applied when switching to material B. 

 

2.2. The solvent effect on contamination removal 

Previous work used high-speed centrifugal force (6000-10,000 rpm) to remove residual 

material [23], which is inefficient for high-viscosity resins (>1 Pa·s) and may damage the 

printed soft structures. The addition of the rinsing agent addressed these issues. Three rinsing 

agents were tested, and 95% ethanol was chosen as the rinsing agent in this work (Fig. S1 and 
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Fig. S2). The cleaning effectiveness of the rinsing agent was evaluated for three resins with 

different viscosities: VeroBlack (0.15 Pa·s), F69 (1.40 Pa·s), and EAUD (4.58 Pa·s). Resin 

thicknesses after rotation (t2 – t1) with and without rinsing were measured (Fig. 2(a) and (b)). 

Note that the real printing platform in the DLP system is down-facing (Fig. 1(a)), while the 

setup in Fig. 2(a) is designed for resin thickness characterization. The platform is oriented 

upward in this test to enable controlled dispensing and measurement of residual resin, and 

gravity effects are negligible compared with centrifugal acceleration. 

The total rotational time was set to 16 s in all tests. Residual thicknesses below 10 μm 

were considered acceptable with no significant cross-contamination. As shown in Fig. 2(b), the 

non-rinsed samples required higher speeds: 5000 rpm for VeroBlack and 8000 rpm for F69. In 

contrast, the rinsed samples achieved similar results at a much lower speed (3000 rpm for both 

resins), with nearly 100% contamination removal at 6000 rpm. For EAUD, the residual 

thickness was 26 μm even at 10,000 rpm without rinsing, making it unsuitable for multimaterial 

printing. However, rinsing reduced the residual thickness to nearly zero. 

 

 

Fig. 2. Effectiveness of solvent rinsing in removing contamination. (a) Experimental procedure 
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for contamination comparison. (b) Residual resin thickness as a function of rotational speed for 

three resins with varying viscosities (Red lines: non-rinsed samples; Blue lines: rinsed samples). 

(c) A two-material checkerboard pattern designed for contamination comparison. (d),(e) 

Snapshots of the two-material printed samples without and with the rinsing step. (f) Relative 

brightness profile along lines L1 and L2. (Scale bar: 5 mm) 

 

Two-material checkerboards with a thickness of 1.5 mm were 3D printed using F69 (black) 

and VeroClear (transparent) for comparison (Fig. 2(c)). The rotation speed was set to 6000 rpm. 

Samples without rinsing showed obvious contamination (Fig. 2(d)), with the transparent areas 

heavily contaminated by the black resin. In contrast, rinsed samples displayed no visible 

contamination in the transparent areas (Fig. 2(e)). Quantitative analysis of relative brightness 

(RB) values was performed to assess contamination levels. The RB values along lines L1 and 

L2 also show sharp boundaries between the two materials after rinsing (Fig. 2(f)). The RB curve 

of the rinsed sample showed an apparent drop at the material interface compared to the non-

rinsed one, indicating a clear interfacial boundary. 

 

2.3. Theoretical model for printing size estimation 

Although solvent-assisted multimaterial DLP 3D printing effectively eliminates cross-

contamination, the accurate assignment of voxels requires the development of theoretical 

models that can predict the voxel size. A theoretical model considering chemical reactions, 

diffusion effects, and Gaussian light fields was developed.  

The polymerization process includes complex physicochemical reactions. When a 

photoinitiator (PI) absorbs photons, it decomposes into two active radicals R* at a 

decomposition rate of Kd. The symbol * represents the active site. These radicals react with 

monomers M at an initiation rate of Ki, forming active monomers RM*. These active monomers 

propagate polymer chains at a rate of Kp, and chain termination occurs at a rate of Kt [26,41,42]. 

Oxygen involvement is neglected due to the absence of an oxygen-permeable window. The 

reaction can be summarized as 

 
*PI 2R ,dK

⎯⎯→  (1) 
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* *R +M RM ,iK

⎯⎯→  (2) 

  * *

n n+1RM +M RM ,pK
⎯⎯→  (3) 

  
* *

n m m+n n mRM +RM RM R/RM +RM .tK
⎯⎯→  (4) 

Considering chemical species diffusion, a photopolymerization kinetics model is 

developed: 

 2 ,I
I I d I

C
D C K C I

t


=  −


 (5) 

 
2 2 ,R

R R d I i M R

C
D C K C I K C C

t


=  + −


 (6) 

 
2 2 ,RM

RM RM i M R t RM

C
D C K C C K C

t


=  + −


 (7) 

 
2 .M

M M p M RM i M R

C
D C K C C K C C

t


=  − −


 (8) 

The variables CI, CR, CRM, and CM represent the concentration of the photoinitiators, 

radicals, active monomers, and monomers, respectively. The variable diffusion coefficient Dj 

(j = I, R, RM, M) is defined as [27] 

  
1 1

,
( ) Liquid Solid

j j jD t D D

 −
= +  (9) 

where Liquid

jD  and Solid

jD  represent the diffusion coefficients of specific species in the liquid 

phase and solid phase. The degree of conversion (DoC)   is expressed as the reduction of 

monomers  

  1 .
( 0)

M

M

C

C t
 = −

=
 (10) 

The light field I is the superposition of all projected pixels 

  
1

( , , ) ( , , ),
n

i

i

I x y z I x y z
=

=   (11) 

where Ii is the light intensity distribution projected from each pixel. It follows the Gaussian 

distribution [24,28,31] 
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2 2

0 0
0 2

0

( ) ( )
( , , 0) exp 2 ,i i

i

x x y y
I x y z I



 − + −
= = − 

 
 (12) 

where I0 is the peak light intensity at the center (x0, y0). 0 is the waist radius of the Gaussian 

beam, representing the radius where the light intensity drops to I0/e
2 (e is Euler’s number).  

The light is propagated along the Z-axis. Thus, 

  
( )

( ),
I z

I z
z




= −


 (13) 

where  is the overall absorption coefficient, incorporating the effects of photoinitiators, cured 

polymers, uncured monomers, and photoabsorbers as 

  .I I P AB ABC     = + +  (14) 

Here, CI is the concentration of PI, and AB is the weight ratio of photoabsorbers. The I 

P AB are the absorption coefficients of initiators, cured polymers, and photoabsorbers, 

respectively. The parameters are listed in Table 2. 

 

Table 2. The parameters used in light intensity calculation. 

Name Value Definition Units 

I0 198.7 Peak light intensity value W/m2 

𝜔0 42×10-6 Measured beam waist radius m 

I 45.83 Absorption coefficient of photoinitiators [27] m2/mol 

P 1.8×103 Absorption coefficient of polymers [27] 1/ m 

 

A custom MATLAB script was developed to simulate the photopolymerization process. 

Fig. 3(a) and (b) show the simulated   distribution of a voxel with 10 pixels × 10 pixels at the 

focal plane with curing times of 0.5 s and 1.5 s. The black contours show the position where 

 reaches the critical value of DoC c. Here, c is set to 0.15 [31]. The cured width is defined 

as the distance between two opposite sides of the contour. Fig. 3(d) and (e) show the simulated 

isosurface of  = c with exposure time of 0.5 s and 1.5 s, respectively. The cured depth is 

defined as the maximum z-coordinate of the isosurface. 

 

2.4. Model-guided elimination of material interference 
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The theoretical model was validated by experiments using four materials: VeroClear, 

TEAA, FT, and F69. Fig. 3(e) and (f) compare the theoretical and experimental depth and width 

as functions of the exposure time. The cured width is measured by printing blocks with 10 

pixels × 10 pixels, while the cured depth is measured by printing overhanging structures (Fig. 

S3). The reaction coefficients Ka (a = d, i, p, t) and diffusion coefficients were obtained by 

fitting the model to experimental width and depth. The fitting of the reaction–diffusion 

coefficients to the experimental data was performed manually using the Least Squares Method. 

For each material, the key parameters, Ka (a = d, i, p, t) and diffusion coefficient D, were 

assigned with an initial value and bounded ranges. The sum of squared differences between the 

simulated and experimental results was computed for both the exposure time–width and 

exposure time–height curves. The parameters were iteratively adjusted until this sum reached 

its minimum value, ensuring optimal agreement between the model and experiment. 

The model accurately predicts the sizes of printed voxels. As exposure time increases, both 

depth and width grow, but different resins exhibit varying trends. For example, FT and F69 

show a relatively flat increase in depth but a sharp increase in width with exposure time. In 

contrast, VeroClear and TEAA exhibit larger depth increases with relatively less increase in 

width compared to FT and F69. The simulated results for all materials can be found in Movie 

S1.  

During the multimaterial voxel printing, we observed a common printing error: material 

interference, where one material occupies the region designated for another. For example, a 

two-material pattern with intersecting lines (5 pixels wide, VeroBlack) and squares (20 × 20 

pixels, VeroBlue) was printed using the same parameters (0.7 seconds of exposure per layer). 

The microscopic image of the printed sample shows the substantial overlap of square and line 

areas (Fig. 3(h)). The dashed box highlights the intended square dimensions, but the printed 

squares are much larger, occupying the space for the line areas. Thus, the material interfaces 

remain blurred even after rinsing. This interference leads to substantial differences in both 

structure and material volume fraction compared to the design. The phenomenon results from 
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different evolutions of the printing sizes of VeroBlack and VeroBlue under the same printing 

parameters (Fig. 3(j) and (k)).  

Based on the theoretical model, the optimized printing parameters were selected. The ideal 

exposure time is determined by identifying the intersection of the theoretical curves with the 

target width (500 m for 10-pixel wide features) (Fig. 3(c) and (j)). The corresponding cured 

depth is then calculated using these exposure times (Fig. 3(f) and (k)). Table 3 lists optimized 

voxel printing parameters. The layer thicknesses of the VeroBlue and VeroBlack are set to 50 

m to ensure strong bonding. A snapshot and microscopic image of the printed sample using 

the optimized printing parameters are shown in Fig. 3(i), exhibiting clear material interface 

boundaries. It is worth mentioning that the coupled Gaussian field–reaction–diffusion 

framework is based on fundamental free-radical photopolymerization kinetics incorporating 

Beer–Lambert optical attenuation and short-time diffusion effects. Therefore, it is not limited 

to a specific resin system. In this study, the model is validated using six different photopolymer 

materials, and the predicted voxel dimensions showed good agreement with experimental 

measurements. Hence, the proposed model is expected to be universally applicable to other 

material systems that follow similar photopolymerization mechanisms. 
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Fig. 3. Theoretical model for optimizing printing parameters. (a), (b) The simulated DoC 

distribution of TEAA at the focal plane (z = 0) with an exposure time of 0.5 s and 1.5 s, 

respectively. The black contours show the location of DoC  = c. (c) The comparison between 

the simulated (solid lines) and experimental (markers) width for four materials. (d), (e) The 

simulated isosurface of  = c with exposure time of 0.5 s and 1.5 s, respectively. (f) The 

comparison between the simulated and experimental depth for four materials. (g) The designed 

pattern featuring a minimal size of 5 px. (h), (i) The snapshot and microscopic image of the 

printed sample before and after parameter optimization, respectively. The dashed boxes show 

the desired dimension. (Scale bar: upper part 2 mm, lower part 0.5 mm) (j), (k) The comparison 

between the simulated (solid lines) and experimental (markers) width and depth for VeroBlack 

and VeroBlue. 
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Table 3. The optimized printing parameters for various materials. 

Materials VeroClear FT F69 TEAA VeroBlue VeroBlack 

Time (s) 0.68 0.62 0.3 0.77 0.3 0.44 

Maximum layer 

thickness (m) 
411 217 84 814 180 101 

 

2.5. Voxel composite material 

The developed rotation-rinsing printing method, coupled with model-based exposure 

parameters optimization, overcomes interfacial contamination and enables high-fidelity voxel 

printing with clear boundaries. The mechanical properties of the voxel structures were then 

analyzed using a developed voxel-based Python-assisted FE simulation framework. FE 

simulations were conducted in Abaqus 2020 (Dassault Systems, Waltham, MA, USA). Home-

written Python scripts partition the structures using desired voxel sizes, allocate the material 

according to the desired input, and perform calculations and post-processing. 

Voxel composite cuboids (32 mm × 6 mm × 1 mm) were designed to validate the FE 

simulation framework (Fig. 4(a)). The voxels were randomly allocated, with each unit 

measuring 0.5 mm × 0.5 mm and a height of 100 μm. Three materials with different Young’s 

moduli were chosen to print the voxel cuboids: VeroClear (1.1 GPa), FT (1.4 MPa), and TEAA 

(0.4 MPa) (Fig. 4(d)). Two rigid-soft material combinations: FT-TEAA pair, and VeroClear-

FT pair were printed with various r (volume ratios of rigid material) ranging from 0% to 100%. 

The snapshots and microscopic images of the two pairs can be found in Fig. S4, showing 

reliable printing quality. Fig. 4(b) and 4(c) show the uniaxial tensile stress–strain curves for the 

voxel cuboids made from the FT-TEAA pair, and the VeroClear-FT pair, respectively. Voxel-

based simulations were conducted, and the material distributions in the simulations are shown 

in Fig. S4. The FE-simulated stress–strain curves show good agreement with the experimental 

curves for the FT-TEAA pair. The discrepancy between the experimental and simulated curves 

in Fig. 4(c) mainly arises from local fractures that occur during the uniaxial tensile tests, which 
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were not considered in the FE simulations. Local fractures tend to initiate at regions with large 

modulus mismatch or imperfect interfacial bonding between adjacent voxels of different 

materials (Fig. S6). Consequently, the experimental stress values are slightly lower than the 

simulated ones, particularly beyond the elastic regime. The corresponding elastic moduli E, 

calculated from the stress–strain data, are shown in Fig. 4(e) and (f). The elastic moduli of the 

composite structures vary continuously between the moduli of the rigid and elastic materials, 

which span four orders of magnitude.  

To quantitatively evaluate the mesh sensitivity of the Python-assisted FE framework, 

simulations were performed with different mesh refinement levels with n = [1, 2, 4, 5, 6, 8]. 

Given the voxel size of 0.5 mm, the corresponding mesh sizes were 0.5, 0.25, 0.125, 0.1, 0.083, 

and 0.0625 mm. The relationship between voxel size and mesh size is illustrated in Fig. S5(a). 

The simulated stress-strain curves in Fig. S5(b) exhibit only minor variations among different 

mesh sizes. The stress values at 100% strain are summarized in Fig. S5(c). The stress converges 

rapidly when n is larger than 4. The computational time rises from approximately 10 minutes 

for n = 5 to about 2 hours for n = 8. The dashed lines in Fig. S5(c) represent the 0.5% error 

threshold, indicating that the simulations with n ≥ 5 achieve sufficient accuracy. Therefore, n = 

5 was selected as an optimal balance between computational efficiency and numerical accuracy. 

The transition zone of the rigid-soft material was analyzed using three different voxel 

distributions: a direct connection (referred to as "Simple"), a uniform region with r = 50% 

(referred to as "Uniform"), and a graded region where r gradually ranges from 0% to 100% 

(referred to as "Graded"). The sample slice image and the microscopic images are shown in Fig. 

4(g), (i), (k). VeroBlack (black) and TEAA (transparent) were used. It is worth mentioning that 

the differences in the local color are caused by the different distribution of the black voxel along 

the z-axis rather than contamination. Snapshots show that the boundaries between individual 

voxels remain clear, even with small voxel sizes. Fig. 4(m) shows the experimental and FE-

simulated tensile stress–strain curves for the voxel composite cuboids. The simulated and 

experimental deformed shapes demonstrate good agreement (Fig. 4(h), (j), (l)).  
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Fig. 4. Python-assisted FE simulation guided design for voxel composites. (a) Schematic 

illustration of the voxel cuboid comprised of randomly distributed rigid and soft voxels. (b), (c) 

The experimental (solid lines) and FE-simulated (dashed lines) stress–strain curves of voxel 

composites VeroClear-FT and FT-TEAA. (d) The Young’s moduli of the chosen materials (e), 

(f) The experimental (markers) and FE-simulated (solid lines) E as functions of r for voxel 
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composites VeroClear-FT and FT-TEAA. (g), (i), (k) Design and microscopic images of two-

material dogbone samples with 3 types of transitional regions: simple, uniform, and graded. 

(Scale bar: 1.5 mm). (h), (j), (l) Experimental and simulated deformation of the dogbone 

samples before fracture.  (Scale bar: 5 mm) (m) Experimental and simulated tensile stress–

strain curves of samples with varying transitional designs. (n) Toughness comparison for the 

three transitional designs.  

 

Note that although the volume fraction is identical for all three structures, their mechanical 

behaviors differ significantly due to the voxel distributions. Experimental toughness, calculated 

from the areas under the stress–strain curves, is shown in Fig. 4(n). The "Graded" design 

exhibited the highest toughness among the three samples, demonstrating that gradual transitions 

in material properties enhance the overall mechanical performance of the rigid-soft connection. 

A snapshot of the fractured sample (Fig. S4) shows that the fracture occurs away from the 

material interface, indicating strong interface bonding. 

 

2.6. An ML-EA design method for multimaterial controllable buckling structures 

The validated Python-assisted FE simulation framework was then used to inversely design 

mechanical properties using voxel distributions. Conventional optimization methods would 

face tremendous computational costs when dealing with the vast design space of voxels 

[33,43,44]. Here, an ML-EA design method was developed. A typical buckling structure, 

consisting of three hinges and two blocks, was taken as an example (Fig. 5(a)). Each hinge has 

a uniform width t = 4 mm and height h = 8 mm, and the overall height and thickness of the 

structure are L = 75 mm and T = 2 mm, respectively. Upon compression in the vertical direction, 

the blocks rotate due to the buckling instability of the hinges.  

Two materials, VEAA and F69, were used. VEAA exhibits elastoplastic behavior, with an 

elastic modulus of 200 MPa, a yield stress of 8 MPa, and a tangent modulus of 16 MPa after 

yielding (Fig. S7). F69 demonstrates hyperelastic behavior, described using a two-parameter 

Mooney-Rivlin model with C10 = 0.1215 MPa and C01 = 0.9586 MPa. Fig. 5(b) shows the 

experimental (solid curves) and FE simulated (dashed curves) force–strain (u/L) curves under 

compression for the structures made from VEAA and F69, respectively. The two different 
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materials show distinct behaviors: for the hyperelastic F69 structure, the post-buckling stiffness 

remains positive, leading to a continuing increase in force. In contrast, buckling occurs near the 

yield point for the elastoplastic VEAA structure, causing a sharp load decrease concomitant 

with buckling [45]. The simulated and experimental deformations of the F69 structure are 

compared in Fig. 5(c). 

Previous work has explored the buckling behaviors of similar structures. Here, we 

demonstrate that mechanical behaviors can be controlled by designing voxel distributions. 

Three parameters were used to characterize the force–strain curves: the force F1 at buckling, 

the force F2 at a compression strain of 10%, and the area A under the force–strain curves (Fig. 

5(b)). The ML-EA workflow is illustrated in Fig. 5(e). First, a dataset is generated for the ML 

model. The buckling structure is partitioned into 26 areas (Fig. 5(d)), each assigned a code 0 or 

1 to represent the two materials. By varying voxel combinations, various force–strain curves 

can be designed. The input consists of randomly generated arrays (1×26 in size, with 4000 

samples) representing material voxel combinations. The Python script reads the arrays, 

allocates materials accordingly, and automatically computes the corresponding force–strain 

curves via FE simulation. The outputs are constructed by extracting three features (F1, F2, and 

energy absorption) from each curve.  

Next, an ANN-based ML model is established to learn the mapping between material 

distribution and mechanical response and to function as a surrogate model. The ML model 

comprises two feedforward layers: a hidden layer of 50 neurons and a linear regression layer. 

The Bayesian regularization is used in training the ML model. The mean squared error (MSE) 

functions as the loss function and converges to a steady state, as shown in Fig. 5(g). A high 

coefficient of determination (R2 = 0.9993) is observed in Fig. 5(h), showing that the developed 

ML model can accurately capture the underlying pattern of the dataset. 

Lastly, the EA is employed to optimize the material distribution for achieving the desired 

mechanical performance. The optimization begins by generating a generation of 150 

individuals, where each individual corresponds to a distinct material distribution. The 

generation evolves through selection, crossover, and mutation after a customized fitness 
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function evaluates each individual. For energy absorption applications, the desired force–strain 

curves generally require a small force change between F1 and F2, while maximizing the total 

absorbed energy (A). Thus, the fitness function value (Fval) is formulated as: 

  1 2( ) / ,
b

Fval F F a cA= − −  (15) 

here, a = 3, b = 5 and c = 100. Fig. 5(i) shows that the Fval decreases when the generation index 

grows. The optimization process stops when the change in Fval reaches the function tolerance 

10-6. The computational time of a single FE simulation is approximately 2 minutes. Thus, a 

conventional optimization process requiring 100 iterations would take about 200 minutes in 

total. In contrast, the training of the machine learning model and the subsequent evolutionary 

optimization process takes around 2.5 minutes, which is around 80 times faster than 

conventional FE-based optimization.  

The parameters a, b, and c were introduced to normalize the force difference and balance 

two competing objectives: minimizing force difference (F1−F2) and maximizing the area A of 

the force–strain curve. The constant a = 3 specifies that the targeted force difference should be 

less than 3N. The constants b and c determine the weighting of the two terms. To justify these 

parameters, a systematic sensitivity analysis was performed by varying b from 2 to 8 and c from 

20 to 200. For each parameter pair (b, c), the evolutionary algorithm was performed using the 

trained neural network. The resulting optimized data (70 data points, marked as red stars) were 

compared with the full database of simulated data (3000 data points, marked as blue circles) in 

the (F1−F2, A) space (Fig. S8). The optimized data achieve a large area A while restricting the 

force differences, which is challenging to achieve by manually guessing the material 

distribution. On the other hand, the optimized results exhibit only minor variations across the 

tested range, confirming the robustness of the fitness function.  

Although the optimized data are concentrated within a narrow region, several distinct 

material distributions emerged. The 70 parameter pairs generate 4 unique material distributions 

(Table S1), which were further analyzed via FE simulation. The resulting force-strain curves 

(Fig. S9) show similar profiles, and all achieve the desired performance. The FE simulated 
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force–strain curves are shown in Fig. 5(j) for the material array in the 1st, 10th, 50th, and 100th 

generations. The multimaterial buckling structure is printed using the optimal material 

distribution. The experimental curve agrees well with the FE simulated curve before 5% strain. 

The snapshots of the simulated and experimental deformations are shown in Fig. 5(k) and agree 

well. The decrease in the experimental force after 5% strain may be caused by the detachment 

of the top left beam (Fig. 5(k)).  
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Fig. 5. Design method of the multimaterial controllable buckling structure using a machine 

learning model and evolutionary algorithm (ML-EA). (a) The schematic illustration of the 

buckling structure with three hinges and two blocks. (b) The simulated and experimental force–

strain curves of the uniaxial compression test using single material VEAA and F69. (c) The 

comparison between the experimental and simulated buckling deformation of the F69 case. (d) 

Schematic illustration of the material distribution and the index of the material distribution array. 
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(e) The training process and the workflow of the optimization process. (f) The architecture of 

the ANN-based ML model. (g) The MSE function of the ML model during the training process. 

(h) The linear regression analysis of the ML model. The coefficient of determination (R2 = 

0.9993) shows good prediction capability. (i) The evolution of Fval during the EA-based 

optimization process. (j) The FE simulated results using the optimized results in the 1st, 10th, 

50th, and 100th generations and the experimental result. (k) The snapshots of the simulated and 

experimental deformations using the optimized material distribution. 

 

3. Materials and methods  

UV curable resin: The commercial photo-curable polymer resins include VeroBlue (rigid blue 

polymer, Stratasys, USA), VeroBlack (rigid black polymer, Stratasys, USA), VeroClear (rigid 

transparent polymer, Stratasys, USA), F69 (soft black polymer, Flashshore, China), TangoPlus 

(soft translucent polymer, Stratasys, USA). The mixed commercial photo-curable polymer 

resins include FT, VEAA, and TEAA. The FT is a mixture of F69 and TangoPlus with a mass 

ratio of 1:1. The mixture VEAA consists of 80 wt% VeroClear and 20 wt% EAA (epoxy 

aliphatic acrylate, Ebecryl 113, Allnex, USA). 0.02 wt% Sudan I is added to the VEAA mixture. 

The mixture TEAA consists of 60 wt% Tango and 40 wt% EAA. The mixtures mentioned 

above are magnetically stirred at 40 °C for at least 6 hours after mixing all the ingredients. The 

viscous EAUD hybrid resin consists of 60 wt% EAA and 40 wt% AUD (Ebecryl 8413, Allnex, 

USA). 2 wt% of Irgacure 819 (Sigma-Aldrich, USA) is added to the mixture as the 

photoinitiator.  

 

Multimaterial DLP printing system: The linear translation stage LTS300 (ThorLabs, USA) 

moves the printing platform. The servo motor EC-i 52 (Maxon, Germany) is responsible for 

spinning the platform to remove the residual resin and rinsing agent. A DLP projector PRO6500 

(Wintech, China) is used to project the corresponding slice image to the bottom of the resin 

tank. The PFA membranes are purchased from local retailers. 

 

Resin thickness measurement: Experiments were conducted using a KW-4C spin coater 

(SETCAS, China) with facing-up circular acrylic substrates (36 mm diameter) to enable 
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accurate dosage. The base thickness of the substrates (“t1”) was measured with a micrometer 

screw gauge (accuracy: 1 μm). For each test, 1 mL of resin was dispensed onto the substrate. 5 

mL of 95% ethanol was dispensed onto the plate for the rinsing case. The rotational speed varied 

from 3000 to 10000 rpm, and the acceleration was 3000 rpm/s for all speeds. Two protocols 

were used: 1) 16s of spinning for the non-rinsed protocol. 2) 8s of spinning, dispensing ethanol, 

another 8s of spinning (total 16s). No immersion bath was employed in our experiments, so the 

immersion depth is not applicable. After spinning, the residual film was fixed using a 405 nm 

UV exposure for 3 minutes. The thicknesses of substrate and the residual resin were measured 

(“t2”), and the residual resin thickness was calculated (“t2 – t1”).  

 

FE simulations: For the FE simulation in Fig. 4, 3D stress conditions and hybrid tetrahedral 

elements (C3D4H) are used. The mesh size equaled the voxel size divided by 5 (0.1 mm). For 

FE simulation in Fig. 5, plane stress conditions and modified quadratic triangular elements 

(CPS6M) are used. The mesh size equaled the voxel size divided by 5 (0.4 mm). The static step 

is used, and a displacement imperfection is introduced (0.1 mm).  

 

Uniaxial tensile and compression tests: In the tensile tests of Fig. 4, voxel composites were 

printed with hard material at the ends for clamping. The uniaxial tensile tests were conducted 

on a universal material testing machine (Instron 68SC-2, USA) at room temperature with a 

speed of 10 mm/min. For the compression tests in Fig. 5, an acrylic slot lubricated with silicone 

oil was used to restrict bending directions. The bottom bar of the structures was clamped, while 

the top bar was free and was compressed by another acrylic plate. 

 

Relative brightness calculation: RB was calculated using the ITU BT.709 standard: RB = 

0.299R + 0.587G + 0.114B, where R, G, and B are RGB values read from the images. The 

average RB values of the black area for the two samples are both around 0.07, indicating that 

the two images have the same exposure value without modification. 

4. Conclusion 
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In this work, a multimaterial DLP 3D printing platform is developed that integrates centrifugal 

force-assisted resin removal and liquid-based rinsing to eliminate cross-contamination between 

different materials. This approach enables the fabrication of multimaterial voxel structures even 

for high-viscosity materials. A multiphysics model considering chemical reactions, diffusion 

effects, and Gaussian light fields is proposed to accurately predict voxel sizes. Using the 

theoretical model, optimal printing parameters for each resin are predicted to avoid under-

curing-induced structural failure and over-curing-induced material interference. By combining 

the fabrication technology and theoretical model, voxel structures can be accurately fabricated, 

which can facilitate the design of various behaviors. A Python-assisted FE simulation combined 

with an ML-EA method is presented to inversely design the voxel distribution across a vast 

design space. A buckling structure is taken as an example to design optimal stress–strain curves 

for energy absorption. This work paves the way for the fabrication, modeling, and design of 

3D-printed voxel structures.  
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