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Soft robotic hand with tactile palm-finger
coordination

Ningbin Zhang1,4, Jieji Ren1,4, Yueshi Dong1, Xinyu Yang1, Rong Bian1, Jinhao Li 1,
Guoying Gu 1,2,3 & Xiangyang Zhu 1,2,3

Soft robotic hands with integrated sensing capabilities hold great potential for
interactive operations. Previous work has typically focused on integrating
sensors with fingers. The palm, as a large and crucial contact region providing
mechanical support and sensory feedback, remains underexplored due to the
currently limited sensing density and interaction with the fingers. Here, we
develop a sensorized robotic hand that integrates a high-density tactile palm,
dexterous soft fingers, and cooperative palm-finger interaction strategies. The
palm features a compact visual-tactile design to capture delicate contact
information. The soft fingers are designed as fiber-reinforced pneumatic
actuators, each providing two-segment motions for multimodal grasping.
These features enable extensive palm-finger interactions, offering mutual
benefits such as improved grasping stability, automatic exquisite surface
reconstruction, and accurate object classification.We alsodeveloppalm-finger
feedback strategies to enable dynamic tasks, including planar object pickup,
continuous flaw detection, and grasping pose adjustment. Furthermore, our
development, augmented by artificial intelligence, shows improved potential
for human-robot collaboration. Our results suggest the promise of fusing rich
palm tactile sensing with soft dexterous fingers for advanced interactive
robotic operations.

Over the past decade, the field of robotic hands has significantly
expanded, transitioning from traditional industrial applications to
more complex human environments1. This shift has necessitated the
development of robotic hands capable of providing increasingly dex-
terousmovements and rich tactile sensing. The conventional approach
to designing such advanced robotic hands has typically involved the
introduction of a large number of sophisticated rigid mechanisms and
distributed hard sensors2,3, but also introduces high structural and
control complexity, especiallywhen applying it for delicate operations4.

Soft robotics5–13, which employs low-modulus materials and
compliant structures to build robotic functions, has emerged as a
promising candidate to address this challenge. This cutting-edge
technology has enabled robotic hands to achieve high dexterity and

versatilitywhilemaintaining the simplicity of structure and control14–19,
promoting their wide application in fields such as industrial picking
up20,21, underwater exploration22,23, and neuroprosthetics13,14. Mean-
while, numerous tactile sensors based on different sensing principles
(e.g., resistive24,25, capacitive26,27, barometric28,29, and optoelectronic30)
have been developed to enhance soft robotic hands with tactile sen-
sations (e.g., pressure, strain, and temperature), thus enhancing the
ability of soft robotic hands to sense and interact with the
environment.

Despite the recent advances in soft robotic hands integrating
tactile sensing, current studies primarily focus on implementing tactile
sensing on the finger or fingertip13,18,24–29. To comprehensively mimic
the human hand’s capabilities, integrating palm tactile sensing is also
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crucial because the palm is involved in a considerable portion of
grasping and manipulation tasks30,31 for enhanced reliability and
improved versatility15,16. The absence of tactile sensing of palm-object
contacts precludes the full utilization of the palm functions for these
tasks. Furthermore, the exquisite tactile feedback of object-palm
contact during such operations has not been well achieved32. This
demands a highly integrated palm-finger design to provide both high-
density tactile sensing (up to about 240 unit/cm2)33 and dexterous
multimodalfingermovements to ensureeffective object-palmcontact,
akin to those of the human hand. During the past decade, many pio-
neering works combining the sensing palm and soft fingers have been
reported29,34–39, where the sensing density of the palm is typically less
than 10 units/cm2 and the finger movements are usually simple. Cur-
rently, it remains elusive to design soft dexterous hands with high-
density tactile sensing (Supplementary Table 1).

This work presents a dexterous soft robotic hand that integrates a
high-density tactile palm and pneumatic two-segment soft fingers
(termed TacPalm SoftHand), enabling rich tactile feedback for robotic
operations (Fig. 1). The palm is designed employing a visual-tactile
sensing approach40–46, having a compliant surface to capture the high-
density three-dimensional shape information of the contacted object.
The finger is designed based on soft pneumatic fiber-reinforced
actuators47,48, featuring two independently actuated segments to
enable multimodal bending motions. These characteristics enable
TacPalm SoftHand to adaptively grasp objects with diverse physical
properties and placements, and achieve detailed perception and
accurate classification of their surface features. By coordinating finger
movements with dense tactile sensing on the palm, TacPalm SoftHand
further unlocks new possibilities for various delicate operations and
seamless human–robot collaboration.
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Fig. 1 | General design concept and advantages of TacPalm SoftHand.
a Extensive tactile engagement between the palm and various objects during daily
activities of the human hand. b The human hand performs dexterous finger
motions and leverages the palm to provide high-density tactile feedback. The
cooperation between fingers and the palm enables rich perceptions of object
properties and delicate hand operations. c TacPalm SoftHand is composed of a
high-density visual-tactile palm, dual-segment soft fingers, and their cooperation

strategies, mimicking those of the human hand. The high-density sensing stems
from the complementary metal oxide semiconductor (CMOS) in the camera with
high resolution.d The cooperation of finger dexterity and high-density palm tactile
sensing expands the capabilities and application boundaries of soft robotic hands.
e A comparison of the sensing density of the palm and the finger dexterity with
other soft robotic hands equipped with palm tactile sensing.
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Results
Design of TacPalm SoftHand
The design objective of TacPalm SoftHand is to achieve high-density
tactile sensing on the palm and dexterous movement capabilities for
grasping a wide range of everyday objects. Considering sensing
technologies32, human grasp taxonomies30, and robotic grasp
principles49, we propose that: (i) the visual-tactile sensing principle is a
promising approach for integration into the palm region to provide
high-density tactile feedback; (ii) a three-finger hand capable of both
powerful wrapping and precise pinching could be sufficient for most
grasping tasks. To this end, the mechanical structure of TacPalm
SoftHand includes a compact visual-tactile tactile palm, soft two-
segment fingers that can generate both power wrap and precision
pinch, and a palm-finger connector (Fig. 2a).

The tactile palm, with a cylinder-like shape, consists of a micro
camera module, a multi-layer sensing body, a light-emitting diode
(LED) ring, and accessorial components (Fig. 2b). The multi-layer
sensing body includes a transparent elastomer layer covered with gray
ink membrane for recording the object’s surface morphology with
uniform albedo, a transparent acrylic layer for supporting the elasto-
mer, and a diffuser layer for spreading out the light. The sensing body
deforms when an object touches it, and the planar deformation
information is captured by the embedded camera. To further obtain
the depth information, the LEDs on the ring are programmed into

three sets of red (R), green (G), and blue (B), generating colored light
gradients for varied touchdepth. To eliminate the inter-reflection from
the transparent acrylic layer, the optimized LEDmounting height is set
as hlm = ðrp �wlÞ= tan θ

2

� �� hca =4:56mm according to a theoretical
optical model (Fig. 2c), where wl = 5mm is the width of each LED,
rp = 25mm is the palm radium, and hca= 24mm is the distance
between camera and the acrylic layer. The accessorial components are
designed to support components and provide assembly alignment.

As shown in Fig. 2d, the softfinger consists of a two-segment fiber-
reinforced elastomeric chambermade of low-modulus silicone rubber
(Young’s modulus E =0.16MPa, Dragon Skin 10), a high-modulus
polyethylene sheet (E = 275MPa) attached to the bottom of the elas-
tomeric chamber, and an elastomeric skin made of lower-modulus
silicone rubber (Ecoflex 00-30, E =0.07MPa). During pneumatic
actuation, the top side of the fiber-reinforced elastomeric chamber
elongates, while the polyethylene sheet restricts elongation on the
bottom side. This difference in elongation between the top and bot-
tom sides creates the segment’s bending motion. The proximal seg-
ment and distal segment can be independently or uniformly actuated,
allowing the finger to achieve both powerwrap andprecision pinch for
most grasping tasks49,50. The segment length ratio is set to
Lp : Ld =2 : 3, which is comparable to that of the human finger
([proximal phalange]: [middle phalange + distal phalange])51. Addi-
tionally, the elastomeric skin encapsulates the inner components to

Fig. 2 |Mechanical design. aThe soft robotic handmechanismmainly consists of a
tactile palm, three soft fingers, and a palm-finger connector. b The palm integrates
the visual-tactile sensing principle in a compact structure. c The design parameter
of LED mounting height hl for the tactile palm is described by a geometric optical
model.We take itsminimum hlm as the optimal one to avoid the LED’s virtual image

being reflected into the camera. In this model, the parameters θc wl, rp, and hca
denote the field of view, the width of each LED, the palm radium, and the distance
between the camera and the acrylic layer, respectively.d Each soft finger integrates
two independent segments actuated by varied pneumatic pressures p1 and p2 to
mimic the behaviors of the human finger.
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provide the finger with anthropomorphic appearances and more
compliant contact surfaces. To integrate soft fingers with the tactile
palm, we design a palm-finger connector featuring three symmetric
finger mounting bases, each with an inclination angle of 40°. We
prototype TacPalm SoftHand using 3D printing and molding. The fin-
gers are actuated by a multi-channel pneumatic system. Details of
fabrication and assembly are provided in Supplementary Fig. 1, Sup-
plementary Fig. 2, and the “Methods” section.

Sensing performance of the visual-tactile palm
We characterize the tactile sensing performance of the palmby using a
motion platform equipped with a force sensor to press different
standard probes normally (z-direction) against the palm surface (x–y

plane) (Fig. 3a). The standard probes have two types of head geome-
tries: a flat head with a circular contact face (probe A) to evaluate the
sensing density andminimum pressure response, and a hemispherical
head (probe B) to evaluate force-depth relationships. The sensing
density is defined as the number of sensing units per square cen-
timeter (unit/cm2). As the total number of sensing units is given
(1280× 800), the measurement of the total sensing area is required.
The probe A is pressed onto the palm surface to generate a circular
indentation, which is captured by the tactile palm and presented as an
image form (termed raw image). Through dimension mapping
between the circular geometry in the raw image and the contact sur-
face of probe A (Fig. 3b), the total sensing area is determined to be a
rectangle of dimensions 30.08 × 18.80mm, and the sensing density is
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Fig. 3 | Tactile sensing performance of the palm. a Experimental setups and
standard probes/blocks for evaluating the tactile sensing performance of the palm.
Probe A has a diameter df. Probe B has a radius rf, and its pressed depth and the
generated circle diameter are denoted as hp and rp, respectively. b Schematic
illustration for calculating the size of the sensing region and the sensing density.
ProbeA is used for the experiment. cThemeasuredpresseddepthunder the varied
applied normal force of probe B. d Cycling stability at a pressed depth of 2.5mm

(5000 cycles). The insets show the first 10 cycles and the last 10 cycles. e Light
intensity distributions of the sensing region with average value, R channel, G
channel, and B channel. The values are dimensionless and are displayed in a.u. in
the figures. f The depth gradient accuracies for estimated Gx and Gx in the look-up
table. The values are dimensionless and are displayed in a.u. in the figures.
g, h Reconstructed 3D geometries for standard block A and block B. Scale
bars, 10mm.
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calculated as 181,000 unit/cm2 (“Methods” section). This sensing
density is significantly higher than 240 unit/cm2 for the human hand33.
We subsequently control probe A to apply different normal pressing
forces (0.05N to 5N, n = 3 trials) on the palm surface and find that the
palm can respond to a minimum pressure response of 1 kPa. Since the
indentation generated by the flat head of probe A lacks depth infor-
mation (Supplementary Fig. 3), we further investigate the indentation
geometries in response to varying normal pressing forces (0.05 N to
5N, n = 3 trials) using probe B with a hemispherical head. Our obser-
vations reveal that the dimensions of the indentation increasewith the
applied normal pressing force (Fig. 3c), thereby enabling the estima-
tion of depth with a geometric model (Fig. 3a and “Methods” section).
This suggests that we can leverage the indentation variations to
approximately estimate the normal pressing force during robotic
operations. The long-term pressing cycling further reveals the
response stability of normal pressing force for constant pressed depth
(measured at 2.5mm), without observing significant degradation in
normal pressing force for more than 5000 loading-unloading
cycles (Fig. 3d).

Building on the high sensing density of the palm, we evaluate its
ability to reconstruct the three-dimensional (3D) surface shape of
objects. To this end, we first analyze the intensity distributions of the
raw image (without load) and its RGB channels to evaluate the light
illumination. The results show that the tactile palm has relatively uni-
form continuous illumination for shape reconstruction (Fig. 3e). Since
the shape reconstruction requires depth information, we perform a
calibration test by pressing a size-known ball onto the palm surface to
build a look-up table that maps the RGB intensity ðIR, IG, IBÞ of the
generated raw image and the depth gradient ðGx ,GyÞ, and use the Fast
Poisson Reconstruction algorithm39 to generate the surface shape of
an unknown object based on the look-up table (Supplementary Fig. 4,
Supplementary Fig. 5, and “Methods” section). To check the accuracy
of the look-up table, we compare the estimated value and ground truth
value of ðGx ,GyÞ, where the former is obtained from the look-up table
and the latter is calculated based on the size of calibration ball (dia-
meter of 5.09mm). Figure 3f shows the accuracy of the estimated
values (coefficient of determination, R2 = 0.9783 and R2 = 0.9798 for
the x-direction and y-direction, respectively). The shape reconstruc-
tion ability for the x–y plane is evaluated by normally pressing a block
with parallel isometric stripes (termed block A, 1mm interval between
adjacent strips) onto the palm surface (Fig. 3a). As shown in Fig. 3g, the
reconstructed surface shape of block A has obvious straight stripes
and jagged peak features at the sub-millimeter scale. The shape
reconstruction ability for z-direction is evaluated by pressing a block
with triangular steps (termed block B, 0.5mm height difference
between two concentric triangular steps) onto the palm surface
(Fig. 3a). Processedwith the samealgorithm, the reconstructed surface
shape of block B is shown in Fig. 3h. We additionally propose an index
of surface shape reconstruction accuracy (SSRA) to quantify the
quality of the reconstructed surface shapes. As described in the
“Methods” section, the SSRA for the x–y plane and z-direction are
calculated as 92.3% and 81%, respectively.

Finger characteristics and grasping performance
We next evaluate the finger characteristics and grasping performance
of the hand mechanism. The finger workspace is evaluated using an
OptiTrack visual tracking system to capture the fingertip trajectories
and finger flexion angle (Supplementary Fig. 6). The actuation pres-
sures for the proximal and distal finger segments vary from 0 to
150 kPa. The generated workspace has a crescent-shape spanning
57.2mm in x-direction and 96.5mm in y-direction (Fig. 4a). It can be
regarded as the combination results of three primitive actuation
modes: only the proximal finger segment is pressurized (termed
proximal actuation), only the distal finger segment is pressurized
(termed distal actuation), and both segments share the same pressure

(termed uniform actuation). In all actuation modes, the finger flexion
angle nonlinearly increases with the actuation pressure (Fig. 4b). The
maximum flexion angles reach 85.3 ± 5.4° in proximal actuation (PA)
mode, 117.9 ± 1.7° in distal actuation (DA) mode, and 204.3 ± 7.6° in
uniform actuation (UA) mode (mean± s.d., n = 3 measurements),
similar to those of the human finger. Wemeasure the fingertip forces52

in three actuation modes by contacting a force sensor (QMA 147,
Futek, Inc.) mounted on the base below the fingertip (Fig. 4c). The
maximum fingertip force respectively reaches 0.71 ± 0.04N,
1.31 ± 0.09N and 2.19 ± 0.09N (mean ± s.d., n = 3 measurements). The
experimental results (Supplementary Fig. 7) show that the maximum
grasping force of TacPalm SoftHand is about 14.6 ± 0.6 N (mean ± s.d.,
n = 3measurements), which is generally sufficient in grasping tasks for
most common daily objects30 (typically below 10N). The minimum
closing time and maximum finger speed52 are about 0.6 ± 0.1 s and
153 ± 6.5°/s (mean± s.d., n = 10 measurements, detailed in the “Meth-
ods” section), respectively, which are comparable to existing robotic
hands4,53. Overall, the multi-mode movement and gentle output force
of the finger are suitable for handling daily objects, reducing the
potential damage to their surface shapes and textures.

As shown in Fig. 4d, we mount TacPalm SoftHand on a 7-DOF
robotic arm (Zu7, JAKA Inc.) to evaluate its grasping performance. The
finger segments of TacPalm SoftHand can be independently or
synergistically controlled through three actuation modes (Supple-
mentaryMovie 1), enabling two basic grasp types: precision pinch and
power wrap. Their distinction lies in how TacPalm SoftHand contacts
the object. In the case of precision pinch, contact is typically estab-
lished between the distal finger segment and the object. In contrast,
power wrap is characterized by contact between both finger segments
and the object. It is also important to note that this study emphasizes
the interaction between the soft fingers and the tactile palm during
object grasping. Therefore, we focus on grasping scenarios where the
palm is involved, as the palm plays a crucial role in both human and
robotic grasping tasks. For instance, it accounts for a significant por-
tion of involvement in grasping activities34 (Supplementary Fig. 8),
enhances grasping reliability15, and enables object recognition through
tactile feedback32. Supplementary Movie 2 and Fig. 4e showcase
representative examples of human–robot object handovers54, where a
participant transfers the object to TacPalm SoftHand for grasping. In
theseexamples, thefinger actuationmodegenerally transmits fromPA
mode to DAmode to UAmode, leading to the two grasp types ranging
from precision pinch to power wrap. The contact areas between the
fingers and the objects increase (Supplementary Fig. 9). TacPalm
SoftHand can grip slender objects (e.g., a marker pen) or flat objects
(e.g., a card) supported by their tips or edges against the palm. The
inherent compliance of the fingers and the palm surface ensures safe
interaction with deformable fragile objects (e.g., a disposable plastic
cup). TacPalm SoftHand can also grasp loose objects (e.g., cherry
branches and grapes) or oblate objects (e.g., a paper box and an
orange) by enveloping them toward the palm, and can passively
accommodate large non-convex objects (e.g., an octopus tripod).

In more common scenarios where objects are placed on a plane,
palm tactile feedback demonstrates its advantages in assisting grasp-
ing (SupplementaryMovie 3). For example, during a high-speed object
delivery task with the robotic arm (Fig. 4f, maximum arm joint speed,
180 °/s; maximum arm joint acceleration, 720 °/s²), TacPalm SoftHand
with palm tactile feedback achieves successful delivery (in contrast to
the one without tactile feedback experiences delivery failure). Fur-
thermore, we demonstrate the advantage of palm tactile feedback by
picking up a cup cap. As shown in Fig. 4g, TacPalmSoftHandwith palm
tactile feedback achieves more robust picking (100% success rate,
n = 20 trials) compared to the one without tactile feedback (65% suc-
cess rate, n = 20 trials). With tactile feedback, the contact between the
palm and the cup cap can serve as a signal to initiate a power wrap
enveloping the cap edge for picking up. Without tactile feedback, the
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Fig. 4 | Finger performance and palm-assisted grasping. aWorkspace of the soft
finger represented by the captured fingertip trajectories. The two segments of the
finger are actuated with pressures [p1, p2], each ranging from 0 to 150 kPa. The
abbreviations PA, DA, and UA denote proximal actuation, distal actuation, and
uniform actuation, respectively. b Measured finger bending angles under varied
supplied pressures in three actuation modes. c Measured fingertip force under
varied supplied pressures in three actuation modes. d Illustration of TacPalm
SoftHand with a single finger actuated and all fingers actuated in three modes.

e Demonstrations of TacPalm SoftHand performing multimodal grasping from
precision pinch to power wrap. f Demonstration of TacPalm SoftHand with (upper
panel) or without (lower panel) tactile feedback grasping an object during a high-
speed delivery task. The object is initially placed on the desk. g Demonstration of
TacPalm SoftHand with (upper panel) or without (lower panel) tactile feedback
grasping a cup cap during an easy-slip picking up task. The success rate in each
panel is calculated based on n = 20 experimental trials.
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cap is picked up with a precision pinch at its tip and prone to slippage.
Thegrasping anddelivering ofmoreobjectswithpalm tactile feedback
are demonstrated in Supplementary Fig. 10. The cooperation strate-
gies of robotic hand–arm actions and tactile feedback during these
grasping processes are shown in Supplementary Fig. 11. Detailed
experimental setups are described in the “Methods” section.

The above experimental results demonstrate that the integration
of soft fingers and the tactile palm in TacPalm SoftHand enables
adaptive grasping of objects with varying placements, shapes,
dimensions, and weights. Detailed characteristics of the objects used
in these experiments are provided in Supplementary Table 2.

Exquisite object perception and classification during grasping
To evaluate TacPalm SoftHand’s capability to perceive object surface
properties and classify objects during grasping, we select three repre-
sentative categories of objects (see Supplementary Table 3 for detailed
information about the objects). The objects are transferred from a
participant to TacPalm SoftHand for grasping. The first category com-
prises natural objects with thick dimensions (characteristic thickness,
40.2 ± 11.5mm, mean± s.d., n=3 measurements) and irregular fragile
surface textures, such as a balsam pear, a cookie, and a pinecone.
Through analysis of the finger workspace and experiments (n= 10 tests
for each object), it is found that actuating all fingers in a proximal-to-
distal pressure sequence can effectively grasp the object without
pushing it sideways, enabling near-vertical against the palm surface.
With such near-vertical pressing, the object’s contact indentation is
captured and processed into reconstructed 3D surface shapes. From
these reconstructed shapes, we can observe the vivid features of the
object’s surface. Notably, no obvious surface damage to the objects is
observed after grasping (Fig. 5a and Supplementary Movie 4).

The second category of objects are small industrial components
with discernible geometric features on their surfaces, such as a circuit
board, a check valve, and a screw. In contrast to the first category,
these objects are typically thin (characteristic thickness, 5.0 ± 4.2mm,
mean± s.d., n = 3 measurements). It is found that actuating a single
finger in a distal-to-proximal pressure sequence can accurately grasp
and press the object near-vertically against the palm surface (n = 10
tests for each object). With this near-vertical pressing, the tactile palm
generates reconstructed images that capture the subtle geometric
features of objects, which may provide valuable information for sub-
sequent operations (Fig. 5b and Supplementary Movie 5).

The third category of objects are deformable fabrics with a char-
acteristic thickness of 0.5 ± 0.1mm (mean ± s.d., n = 3 measurements),
which are prone to wrinkling, and their fine texture information can be
easily confounded with finger indentations. It is found that actuating
all fingers in a distal-to-proximal pressure sequence can flatten the
fabrics and press the fabric near-vertically against the palm surface
(n = 10 tests for each object). Through this pressing, the tactile palm
generates reconstructed images, enhanced by a filtering algorithm to
mitigate the confounding effects of finger indentations, vividly cap-
turing the fabric’s intricate textures (Fig. 5c and Supplementary
Movie 6). Furthermore, the Fast Fourier Transform (FFT) is employed
to analyze the overall periodicity and directional characteristics of the
textures in a spectrummapmanner. For example, the pineapple lattice
and mesh fabric exhibit more prominent periodic patterns compared
to the lace cloth, while the pleated cloth displays distinct slanting
variations in its texture (Supplementary Fig. 12).

The tactile sensing capability of TacPalm SoftHand is further
evaluated through classification experiments involving ten fabrics of
different texture patterns (Fig. 5d). In prior, we built a dataset con-
taining tactile images of ten different fabric types. During data col-
lection, we control TacPalm SoftHand to randomly grasp each fabric
type using the method described above, obtaining images for training
and testing (detailed in the “Methods” section). In the experiment, we
employ ResNet3455 as the foundational learning model for fabric

classification and fine-tune it for the tactile image dataset, considering
both real-time computational efficiency (processing time of the tactile
image, <0.01 s) and feasible hardware implementation. The testing
results, shown in the confusion matrix (Fig. 5e), indicate that the sys-
tem achieves 97% mean classification accuracy. The only mis-
classification occurs with fabric type 5, which can be attributed to the
incomplete capture of its large hole-like patterns in the tactile images
obtained during finger pressing.

The tests are performed by actuating all three fingers with proper
pneumatic pressures (distal segments, 130 kPa; proximal segments,
110 kPa). The measured finger force applied to the fabric is 2.1 N. An
investigation matrix describing the relationships between classifica-
tion accuracy, finger force, and pneumatic pressure reveals an opera-
tional region where classification accuracy consistently exceeds 90%
(Supplementary Fig. 13). These findings demonstrate that proper
control of both finger force and pneumatic pressure settings is crucial
for reliable and accurate fabric classification.

Delicate operation with palm tactile feedback
Delicate operation requires closer cooperation of dexterous finger
movements and palm tactile feedback. As shown in Fig. 6a and Sup-
plementary Movie 7, TacPalm SoftHand mounted on a robotic arm
picks up a card placed on the desk, with only the card’s top surface
initially exposed for contact (n = 3 task times). Using a cyclic finger gait
strategy consisting of coordinated two-segment movements (rest-
touch-pull-raise-recover, Fig. 6b), TacPalm SoftHand gradually moves
the card away from the desk toward the tactile palm, exposing the
card’s lateral edge. An edge detection algorithm is employed by the
tactile palm to detect line-shaped indentations caused by contact
between the card’s lateral edge and the palm (detailed in the “Meth-
ods” section). This information triggers the pneumatic actuation sys-
tem (Fig. 6c) to control other fingers for adaptive grasping (Fig. 6d).
This finger-palm cooperation is not limited to the solid card56. As
shown in Supplementary Fig. 14, our TacPalm SoftHand can pick up
planar objects with porous surfaces.

This finger-palm cooperation strategy can be further leveraged to
achieve continuous surface detection of the object held by the palm.
As shown in Fig. 6e and Supplementary Movie 8, a variegated fabric
with dispersed surface flaws (which are visually obscured by its var-
iegated pattern) is placed on TacPalm SoftHand’s palm. To detect
these dispersed flaws, TacPalm SoftHand executes finger gaits to
simultaneouslypress andmove the fabric step by step in onedirection.
This approach allows the tactile palm to detect flaws continuously,
rather than only at fixed locations. The indentation differences
between the “flaw” case and the “flawless” case in the tactile images can
be distinguished using an image processing algorithm based on the
color difference (Fig. 6f and “Methods” section). This application
shows the potential of coordinated finger-palm interactions to extend
the sensing boundary beyond the physical limitations of the pre-
designed palm dimensions, facilitating automatic perception over a
larger area without introducing additional robotic devices.

Furthermore, we demonstrate a teapot pouring application where
TacPalm SoftHand grasps a teapot transferred by a participant and
dynamically regulates its grasping pose based on the real-time palm
tactile feedback (Fig. 6g and Supplementary Movie 9, n=3 task times).
Detailed experimental setups are described in Supplementary Fig. 15.
During time T1-T2, soft fingers bend in PA mode (all proximal finger
segments, 130 kPa) to grasp the teapot with its bottom in contact with
the palm surface. The palm monitors the indentation of a selected dot
on the teapot bottom in real-time (Fig. 6h). The extent of indentation is
quantified as the pixel numbers of indentation contour area (ICA)57 in
the tactile image. The tactile-feedback control system is illustrated in
Fig. 6i. During teapot pouring (time T3), the teapot’s center of gravity
shifts slightly due to the water movement inside, which affects the
grasping stability. This subtle change is not easily observed visually but
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can be detected through the reduced ICA. When ICA falls below the
predefined threshold during the tea-pouring process, the pneumatic
actuation system inflates the distal segment of one finger with pre-
defined actuation pressures (80kPa) to adjust the teapot pose and
stabilize it on the palm (time T4), which is reflected by the increase of
ICA. During the subsequent tea-pouring process, the teapot is stably
grasped to complete the task as ICA remains above the threshold (time
T4–T6). The variation of pneumatic pressures and ICA during the pro-
cess are shown in Fig. 6j.

The teapot pouring experiment demonstrates the advantage of
palm-finger cooperation for dynamic tasks. In this approach, the palm
provides stable support with an enlarging contact area for tactile
feedback, while the fingers serve as dedicated end-effectors. This dif-
fers from conventional methods where fingers simultaneously handle
both feedback and execution tasks. This separation of functions
becomes especially beneficial in human-involved scenarios, where
relying solely on real-time finger position adjustments would require
complex control systems and potentially pose safety risks.
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Identification and delivery of blind bags for human–robot
collaboration
Finally, we demonstrate an intelligent human–machine interaction
(HMI) application by mounting TacPalm SoftHand on the robotic arm
to identify and deliver objects that have been packaged and are diffi-
cult to visually recognize (Fig. 7 and Supplementary Movie 10). In this
application (Fig. 7a), five different clusters of objects (hexagon nuts,

peas, bolts, melon seeds, and sagos) are, respectively, packaged in
black plastic bags (referred to as “blind bags”). Before the experiment,
we collected tactile images by using TacPalm SoftHand to grasp these
bags and used machine learning (ResNet34 model) to train an identi-
fication algorithm based on the tactile images (detailed in the “Meth-
ods” section). In the experiment (as shown in Fig. 7b), a participant
seeking specific items (such asmelon seeds) commands the intelligent
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robotic hand–arm system to find them among several blind bags
hanging on a string. The results are immediately displayed on a com-
puter screen (Fig. 7c). If the identified items are not the desired melon
seeds, the robotic hand–arm system moves on to the next bag,
repeating thisprocess.Once found, the robotic hand–armsystempulls
down the bag and safely delivers it to the participant, who then opens
it to verify the identification accuracy. Confusion matrix analysis
(Fig. 7d) reveals that the overall mean accuracy for all five objects in
blind bags is 88%. Melon seeds demonstrate the highest classification
accuracy (100%). Two groups of objects (hexagon nuts vs. sagos; bolts
vs. peas) are moderately misclassified as the latter in each group
(confusion rate, 15%), which is reflected by the probability analysis
(Fig. 7e). This misclassification is mainly due to their similar sizes and
geometric shapes, as well as the blurring effect of the bag.

Discussion
In summary, we have developed TacPalm SoftHand that seamlessly
integrates a high-density visual-tactile palm, two-segment pneumatic
soft fingers, and their coordination strategies for exquisite percep-
tions, versatile delicate operations, and human-involved environ-
ments. The tactile palm has a high sensing density (181,000 unit/cm2),
low response pressure (1 kPa), long-term durability (over 5000 cycles),
and relatively accurate shape reconstruction capabilities (92.3% in the
x–y plane and 81% in the z-direction). The soft finger features two
degrees of actuation, allowing TacPalm SoftHand to perform multi-
modal grasps for objects with various shapes and sizes. As shown in
Fig. 1c, the high-density tactile palm expands the capabilities and
application boundaries of the soft robotichand to acquire exquisite 3D
surface details of objects. The tactile feedback experiments addition-
ally showcase the potential of TacPalm SoftHand for delicate opera-
tions, overcoming the limitations of traditional robotic hands in such
challenging domains.

As shown in Fig. 1d and Supplementary Table 1, the application of
existing soft robotic hands with palm sensing is largely hindered due to
the limited palm-finger cooperation, which stems from either the sparse
palm sensing densities or the restrictedfingermovements. In contrast to
existing works, TacPalm SoftHand features tight and extensive coop-
eration between the tactile palm and soft dexterous fingers. This creates
significant mutual benefits and applications beyond a simple combina-
tion: the tactile palm enhances the fingers’ grasping and manipulation
capabilities with various feedback strategies, while the soft dexterous
fingers enhance the palm’s tactile perception by enriching the contact
interactions between objects and the palm surface. Such palm-finger
cooperation has demonstrated great potential, such as exquisite 3D
surface reconstruction, accurate object classification, delicate dynamic
manipulation, and intelligent human–robot collaboration. In the future,
we envision that by integrating novel multimodal sensors, soft-rigid
hybrid finger mechanisms, and advanced control algorithms, this palm-
finger integrated design could further promote the development of

intelligent robotic hands and pave the way for new practical human-
involved applications.

Methods
Finger fabrication
All the finger molds and endcaps are manufactured with a three-
dimensional (3D) printer (Bambu Lab X1). The material of the molds
and encaps is the printable polylactic acid (PLA). In the molding pro-
cess, we first pour the mixed liquid silicone rubber Dragon Skin 10
(Smooth on, Inc., 1:1 ratio) into themolds for the finger’s inner body. A
vacuum pump is used to remove the air bubbles. After 7 h of curing at
25 °C, the inner body can be demolded from the molds. Next, the
endcaps and tubes are attached to the inner body with the adhesive
(Sil-Poxy, Smooth on Inc.) for strong sealing. A polyethylene fabric
mesh is cut by laser and attached to the bottom of the inner body. A
single thread of 0.8mm diameter is manually wound around the inner
body. Finally, the inner body is attached to the molds for the finger’s
outer skin, and mixed silicone rubber Ecoflex 00-30 (Smooth on, Inc.,
1:1 ratio) is poured into the molds. After similar molding and
demolding processes of the inner body, we can obtain the cured soft
finger with the outer skin.

Palm fabrication and assembly
All rigid components including the bottombase, middle holder, and top
holder are 3D printed with PLA material. First, the camera (size of
30×25 × 12mm, resolution of 1280×800, field of view of θc= 70°) and
LED ring are glued to the bottom base and the middle holder, respec-
tively. The diffuser panel and acrylic plate are cut by laser. The mixed
liquid silicone 00-30 (Wesitru Inc.,1:1 ratio) is injected into the mold to
cast the sensing elastomer. We directly use the acrylic plate as the
bottom of the mold for seamless bonding between the acrylic plate and
the sensing elastomer. This eliminates the optical inhomogeneity of glue
and improves the robustness in contact. After 4 h of curing at 50 °C, we
carefully demold the sensing elastomer from the molds except its bot-
tom connecting to the acrylic plate. Next, the gray silicone ink (Cool
Gray, OKAI Inc.) is uniformly sprayed on the top of the sensing elasto-
mer with a spray gun. The cure time of the ink is about 15min at 120 °C.
A thin layer of hand-feeling silicone oil (Yonglihua Inc.) is uniformly
sprayed on the top surface (curing 15min at 120 °C). Finally, the ink-
covered sensing elastomer with acrylic plate and diffuser panel is
mounted on the top holder with the silicone gel 704 (Kafuter Inc.).

Pneumatic control system
The pneumatic control systemmainly includes the pump, the dSPACE
DS1103 board, the Matlab (Version 2022a) control interface, and the
multi-channel pressure regulation modules. In each module, the pro-
portional regulator (Proportion-air Inc.) ensures the desired output
pressures with high accuracy (0.8 kPa) and the pressure sensor (HUBA
Inc.) monitors the real pressure for the specific finger segment.

Fig. 6 | Cooperation of the tactile palm and soft fingers. a Demonstration of
TacPalmSoftHandpickingup a cardonadesk. Afingerpulls the card away from the
desk using a single-finger gait strategy circularly until the card edge touches the
palm, followed by the palm withstanding the card and providing subtle tactile
feedback of line-shaped indentation to control allfingers for grasping.b Illustration
of the single-finger gait with five time points (T0, T1, T2, T3, T4). The fingertip has a
free trajectory in its workspace and a constraint trajectory when interacting con-
formably with the card on the desk. c Actuation and control system of the finger-
palm cooperation strategy for picking up the card. d Variations of actuation pres-
sures and tactile sensing states during the picking up task. Actuation pressures are
described by P = [p11, p21, p12, p22, p13, p23]. The first subscript denotes whether the
finger segment is proximal or distal. The second subscript denotes the finger
number. e TacPalm SoftHand continuously detects subtle flaws on a variegated
fabric using cyclic finger gaits. f Distinct indentation differences between the flaw

and flawless cases in representative tactile images. CDM (color differencemetric) is
a dimensionless parameter calculated by summing the color variations between the
highest and lowest RGB values in the tactile image. The value of CDM ≥ 40 indicates
a flaw, while CDM<40 indicates a flawless surface (showing only fingertip inden-
tation). Flaws typically create discontinuous geometries that generate image
regions with a wider range of color variation. Flawless regions produce more uni-
form tactile images showing only the finger indentation. g TacPalm SoftHand
adjusts the grasping pose during teapot pouring. The tactile palm continuously
monitors the subtle changes of the geometric feature on the teapot’s bottom and
informs the finger to adjust the teapot’s pose to avoid it falling. hDemonstration of
the trackedgeometries on the teapot’s bottomand the corresponding contour area
in the tactile image. i Actuation and control system of the finger-palm cooperation
strategy for the teapot pouring task. j Variations of actuation pressures and tactile
sensing states during the teapot pouring task.
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Calculation of sensing density and other sensing performance
evaluations
(i) As the diameter of cylinder probe A (diameter df=8mm) and the
camera pixel numbers (Nx = 1280, Ny =800) are known, then we can
calculate the size of each pixel dp=df/Na=0.0235mm/pixel, where
Na = 340 is the detected pixel number along the circle diameter in the
raw image. The sensing region can be calculated as
Lx =Nxdf =Na =30:08mm and Ly =Nydf

=Na = 18:80mm, There, the

sensing density can be calculated as Ds = ðNxNyÞ=ðLxLyÞ. (ii) For the
calculation of pressure generated by probe A, the normal pressing force
is denoted as f p and the corresponding pressure can be calculated as

Pp =4f p=ðπdf
2Þ. (iii) For the calculation of pressed depth generated by

probe B, the radius of probe B is given (rf=4mm) and the pressed depth

is calculated by hp = rf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf 2 � rb2

q
= rf 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

b=N
2
a

q� �
. The

parameters rb and Nb are the actual indentation circle radius and the
pixel number along the circle diameter in the raw image, respectively.
(iv) For the calculation of light intensity distribution, we convert the
observed RGB raw image to an intensity map and then present its
intensity contour and contour line. We also check the intensity of each
channel to analyze the illumination effect of each color light.

3D Shape reconstruction algorithm
The palm contact surface can be modeled as a height function
z = f ðx, yÞ, and the surface normal map is N= ð∂f∂x , ∂f

∂y , � 1Þ. The
observed light intensity at ðx, yÞ can be expressed as
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I(x,y,IR,IG,IB) = R(Gx,Gy), where Gx =
∂f
∂x and Gy =

∂f
∂y denote the surface

gradient with x- and y-direction. For the lighting source of RGB image,
Iðx, yÞ has three channels andwehave ðGx ,GyÞ=R�1ðIR, IG, IBÞ.Webuild
a look-up table by the pressed images from the small ball with a dia-
meter of 5.09mm, and use the look-up table asR�1 to find the ðGx ,GyÞ
by the observed ðIR, IG, IBÞ. We use ðGx ,GyÞ and the Fast Poisson
Reconstruction algorithm to obtain the 3D surface shape of the object.

Calculation of surface shape reconstruction accuracy (SSRA)
The SSRA for x–y plane is calculated as ηxy = 1� jwg �

Pn
i= 1wgi=nj=wg ,

where wgi is the ith gap width and n is the number of intervals in the
reconstructed 3D shape. The SSRA for z-direction is calculated as
ηz = 1� jht �

Pn
i = 1hti=nj=ht , where hti is the ith pixel height in the area

of the reconstructed geometry corresponding to the small step and n
is the pixel number.

Experimental setups and calculations for evaluating finger
characteristics
The minimum closing time tc is calculated by tc = tc5/5, where tc5 is the
measured execution time for a soft finger performing 5 bending-
extension cycles. During the cycles, the finger is actuated in UA mode
with a supplied pressure of 150kPa and a flow rate of about 12 lpm.
Correspondingly, the maximum finger speed vf is calculated by
vf = θbending/tc, where θbending is thefingerflexion anglemeasuredby the
visual tracking system. Each kind of measurement is performed 10
times and the data are averaged.

Experimental setups and tactile feedback algorithms for objects
grasped from a plane
The TacPalm SoftHand, mounted on the robotic arm, is positioned
above the object for each grasping task. The robotic arm is controlled
to move downward, allowing TacPalm SoftHand to approach the
object. To establish palm tactile feedback for the pneumatic control of
the fingers, we have developed an algorithm to calculate the tactile
image’s variation caused by palm-object contact. A tactile image
without contact is denoted as the reference image. During grasping,
the real-time tactile image is captured and transmitted for analysis,
where the reference image is subtracted from the current image to
reveal the contact variation. This image is converted from the RGB
color space to the HSV color space and the saturation channel is
extracted, as the contact region tends to exhibit higher saturation.
Thus, the pixel number with high saturation (PNHS) can be used to
identify the contact region. The threshold for PNHS is set to m pixels
based on preliminary experiments. If PNHS>m pixels, the system
identifies that the object is in contact with the palm. Thus, the robotic
hand–arm system can accordingly regulate its subsequentmovements
for different objects.

Experimental setups for palm perception
In both fabric classification and blind bag identification tasks, we cre-
ate datasets containing tactile images from different items (fabrics or
blind bags) to train the tactile perception neural network. For each
item, we randomly collect 100 images for training and 10 images for
testing. In the fabric classification task, we actuate all three fingerswith
a distal-to-proximal pressure sequence (distal segments, 130 kPa;
proximal segments, 110 kPa) to press the fabric toward the palm,
obtaining clear tactile images. In the blind bag identification task, we
actuate all three fingers with a proximal-to-distal pressure sequence
(proximal segments, 90 kPa; distal segments, 120 kPa) to press the
blind bag toward the palm, obtaining clear tactile images. In both
fabric classification and blind bag identification tasks, we take
ResNet34 as the model to fine-tune the created dataset. In the training
process, we resize collected images into 224 × 224 resolution and send
them to the tactile perception neural network (initial learning rate,

0.00001; Adam optimizer; learning rate scheduler, ReduceLROnPla-
teau; 50 epochs of training).

Image processing for fabric flaw detection
We introduce a color difference metric (CDM, a dimensionless para-
meter) to identify whether a flaw exists. We first capture a reference
tactile image without any pressing. During the fabric flaw detection
experiment, we capture the corresponding tactile images with finger
pressing. Their difference is calculated and is termed the difference
image. For this image, we calculate the color variation between each
RGB channel’s highest and lowest values. The variations of each
channel are summed to obtain the CDM. Flaw regions exhibit a higher
CDMwhile other regionsmerely pressedby the softfinger have a lower
CDM. A threshold of CDM=40 is preset based on our preliminary
experiments to distinguish between the “flaw” case and the “flawless”
case (i.e., the fingertip indentation).

Data availability
All data needed to evaluate the conclusions are presented in the paper,
its “Methods” section, and Supplementary Information. The original
videos and data are available from the corresponding authors on
request. The source data for Figs. 3c–h, 4a–c, 5a–d, 6j, 7e, and Sup-
plementary Figs. 7b, 11a–d are provided as a separate Source Data
file. Source data are provided with this paper.
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