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Abstract—Due to their continuous electromechanical deforma-
tion, rate-dependent viscoelasticity, and complex mechanical vi-
bration, dynamic modeling and high-speed tracking control of
dielectric elastomer actuators (DEAs) remain elusive, significantly
limiting their working bandwidth. In this work, we propose a
physics-informed token prediction (PITP) that enables accurate
modeling of DEA dynamics and high-speed feedforward tracking
control. The PITP framework consists of two key components: a
physics-informed encoder and a dynamic decoder. The physics-
informed encoder is designed based on a simplified equivalent
linear model and trained through the hierarchical optimization
training method, which embeds the global dynamic characteristics
into tokens, minimizing the need for extensive data and training.
Then, the dynamic decoder is developed by using these tokens as
state-dependent parameters, capable of describing complex dy-
namic responses through the autoregressive solution. Finally, by
taking advantage of the model’s reversibility, a direct inverse com-
pensator is established to linearize the input–output relationship.
Experimental results of several DEAs with different configurations
and payloads demonstrate that, based on our PITP framework, the
complex nonlinear dynamic responses of all DEAs can be precisely
described and eliminated within their natural frequency, validating
its generality and versatility. By leveraging fast modeling (<30 min)
and high-speed feedforward tracking control, our PITP framework
may accelerate DEAs’ practical applications.

Index Terms—Dielectric elastomer actuators (DEAs), dynamic
modeling, high-precision tracking control, physics-informed token
prediction (PITP).
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I. INTRODUCTION

D IELECTRIC elastomer actuators (DEAs) have garnered
significant attention in the field of soft robotics owing to

their fast response speed, high energy density, and large defor-
mation [1], [2]. DEAs typically consist of a sandwich-structured
dielectric film and a fixed frame [3]. When a high voltage is
applied across the thin elastomeric film sandwiched between
two compliant electrodes, the film is compressed, leading to an
increase in area and a decrease in thickness due to Maxwell stress
[see Fig. 1(a)]. Based on this working principle, DEAs with
various configurations have been designed to achieve different
types of motion, such as planar DEAs [4], conical DEAs [5],
minimum energy structure DEAs [6], rolled DEAs [7], and
stacked DEAs [8], showing wide applications, such as climbing
robots [9], flying robots [10], deep-sea robots [11], and wearable
robotics [12]. As their emerging applications, dynamic modeling
and precise control of DEAs are highly desired. However, it
remains a significant challenge due to the complex dynamic
characteristics of DEAs [see Fig. 1(b)], including rate-dependent
viscoelasticity, mechanical resonance, and their coupling [13],
[14]. Especially, some high power density DEAs [15], [16]
exhibit high natural frequency (>100 Hz) and serious resonance,
increasing the difficulty of modeling and control.

In previous work, a lot of attention has been paid to solving
the above-mentioned problem. To date, existing approaches are
mainly categorized into four categories: distributed-parameter
approaches, phenomenological approaches, lumped-parameter
based approaches, and learning-based approaches. In gen-
eral, distributed-parameter approaches usually adopt continuum
mechanics and nonequilibrium thermodynamics [17], [18] to
develop distributed-parameter models for DEAs, capable of
explaining their physic phenomena, such as electromechanical
deformation and rate-dependent viscoelasticity. However, these
models generally consist of several partial differential equations,
which are difficult to be converted into the control model because
of their complexity. Different from distributed-parameter ap-
proaches, some phenomenological approaches introduce math-
ematical models (e.g., the Preisach model [19] and the Prandtl–
Ishlinskii model [20], [21]) to characterize the dynamic behavior
of DEAs. Those models only rely on the experimental data
without taking the physical insight into consideration, showing
the advantage of fewer parameters and ease of use. In the
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Fig. 1. (a) Working principle of DEAs. (b) Dynamic response of the sweep
and the rate-dependent hysteresis circles.

meantime, those models can be used to design controllers, such
as direct inverse hysteresis compensation [22], model predic-
tive control [23], and model-based adaptive control [24]. Since
phenomenological models are developed without considering
physical properties, they fail to capture mechanical vibration
phenomena, limiting their working bandwidth. To overcome
the limitations of phenomenological models, lumped-parameter
models [25], [26], [27] have been proposed. These models sim-
plify the DEA into a lumped-parameter dynamic system, which
can accurately describe the rate-dependent viscoelasticity, me-
chanical resonance, and their coupling. Then, several controllers
can be developed, such as nonlinear PID [28], H-infinity [29],
sliding mode control [30], and neural-implicit embedded con-
troller [31]. Due to the presence of unmeasurable states in
lumped parameter models, obtaining a direct inverse model is
challenging. Consequently, existing control strategies often rely
on observers and operate in a closed-loop framework, which
necessitates the use of integrated rigid sensors and limits the
application flexibility of soft actuators. Achieving direct inverse
feedforward compensation for rate-dependent viscoelasticity
and hysteresis remains a significant challenge. Owing to their
remarkable ability to capture nonlinear relationships, machine
learning techniques provide promising solutions for the dynamic
modeling and control of DEAs. For example, gated recurrent
unit (GRU) based inverse models [32], long short term memory
(LSTM) based models [33], and the nonlinear autoregressive
with exogenous inputs (NARX) based self-sensing models [34]
have been developed based on large datasets and extensive train-
ing. Nevertheless, since these approaches are directly trained
on experimental data, they are often highly dependent on data
quality and quantity, and collecting sufficient high-quality data
can be both time-consuming and costly. Consequently, their
practical performance is usually constrained within relatively
low-frequency ranges, which may limit their applicability in
broader band control scenarios. Therefore, the dynamic mod-
eling and control of DEAs remain elusive.

Inspired by the concept of “token,” which is popularly used
in language sequence generation [35], [36], we explore a new
perspective for the dynamic modeling and control of DEAs.
By encoding, predicting, and decoding tokens through ma-
chine learning approaches, the task of language understanding
and generation is transformed into predicting the next token.
Drawing on this idea, this work proposes a physics-informed
token prediction (PITP)-based dynamic model and the feedfor-
ward control strategy for DEAs (see Fig. 2). At first, the dynamic
state of DEAs is regarded as the smallest unit in a motion se-
quence, and the dynamic responses can be decomposed into the
steps of encoding, predicting, and decoding this unit. To reduce
the training time and the need for experimental data, we design
and train a physics-informed encoder based on a simplified
equivalent linear model. We further propose a training method
to treat the physical boundaries as hyperparameters to optimize
hierarchically, enhancing the nonlinear descriptive capability of
the model. Then, the nonlinear dynamic model is developed by
using the tokens as state-dependent parameters. It can precisely
describe complex dynamic responses through the autoregressive
solution. Finally, based on the proposed dynamic model, the
direct inverse feedforward control is straightforwardly derived
and applied to the feedforward control of DEAs. Experimental
results demonstrate the versatility and effectiveness of the pro-
posed model and its corresponding feedforward control strategy
across different DEA configurations and payloads within a wide
frequency range (exceeding 143 Hz).

The main contribution of this work can be concluded as
follows.

1) A PITP-based dynamic modeling strategy is proposed,
introducing the first tokenized dynamic model for DEAs.
This approach addresses complex nonlinear dynamics and
ensures reversibility by decomposing the dynamics into
physics-informed encoding and decoding stages, achiev-
ing accurate representation with reduced data require-
ments and enabling high-speed feedforward control across
diverse configurations and payloads.

2) Based on the PITP-based dynamic modeling strategy,
the resultant models are invertible and can be used to
construct feedforward controllers. Without the external
sensors, it can reduce the complexity of controller design,
contributing to improving the ease of use.

The rest of this article is organized as follows. Section II
introduces the PITP for generalized dynamic modeling and the
feedforward control strategy of DEAs. Section III presents the
experimental results of the prediction of the dynamic model and
the feedforward open-loop control. In Section IV, the ablation
study and further discussion of the PITP are provided. Finally,
Section V concludes this article.

II. DYNAMIC MODELING AND FEEDFORWARD CONTROL OF

DEAS BASED ON PITP

In general, to describe the dynamic responses of DEAs, it is
essential to characterize the relationship between the excitation
voltage u and the output displacement x of the end effector.
Due to the dynamic features of DEAs, the displacement of DEA
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Fig. 2. Framework of general dynamic modeling and control of DEAs based on PITP.

x is typically influenced by nonlinear electromechanical cou-
pling, mechanical vibration, and rate-dependent viscoelasticity.
Therefore, the primary goal of dynamic modeling is to accu-
rately characterize these features. Viscoelastic nonlinearities are
considered a form of energy dissipation [13] and are typically
described using rheological elements. However, these elements
introduce additional unmeasurable state variables, making the
model unsuitable for direct inversion in feedforward control. To
address this issue, it is essential to ensure that all state variables
in the dynamic model are measurable. Accordingly, the dynamic
modeling problem is formulated in a discrete-time framework
as follows, where the system’s state is updated at each time step,
and the dynamic behavior is described through discrete state
transitions:

Xm
t+1 = g(Xm

t , ut)

Xm
t =

[
x0
t , x

1
t , . . . , x

m
t

]T

xm
t =

dmxt

dtm
(1)

where Xm
t ∈ Rm×1, xt ∈ R, and ut ∈ R represent the m-

dimensional motion state, output displacement, and external
excitation of the DEA at timestamp t, respectively; g denotes
the nonlinear function describing the discrete state transition.
However, the complexity involved in designing g increases
the difficulty of directly inverting the model for control pur-
poses. Inspired by the concept of token prediction, we introduce
physics-informed tokens to represent the nonlinear dynamic
process. These physics-informed tokens implicitly embed the
underlying dynamic generation mechanism: they can be en-
coded from the current motion state and, when combined with
external excitations, decoded to predict the subsequent motion
state. Then, the encoding process of the tokens is responsible
for capturing nonlinearities, while the prediction and decoding
are designed to remain simple and invertible. In this way, the
complex nonlinearities are effectively captured while preserving
the invertibility of the dynamic model. In this study, we employ a
deep network to realize the nonlinear encoding process, whereas
the prediction and decoding of the tokens are modeled using a
simple linear dynamic system. As a consequence, the dynamic

process is decomposed into the following stages:

θmt = ϕ(Xm
t , t)

Xm
t+1 = λ(θmt , ut)

Xm
t = [x0

t , x
1
t , . . . , x

m
t ]T

xm
t =

dmxt

dtm
(2)

where θmt ∈ R1×m is the physics-informed token at timestamp t,
ϕ denotes the encoding process, and λ represents the predicting
and decoding process. The design of each module is detailed in
the following.

A. Design of PITP Framework

Our PITP strategy mainly consists of data normalization,
physics-informed token encoder, and dynamic decoder.

1) Data Normalization: Considering that there is high-order
differentiation in the motion state, it may lead to large magnitude
differences between different motion states. As a result, it will
cause instability and difficulty in convergence during deep learn-
ing training. To avoid this issue, we propose scale normalization,
which normalizes the data before they are input into the network

x
�m/2�+1
t = x

�m/2�
t ∗

√
d

x
�m/2�−1
t = x

�m/2�
t /

√
d

d = 2πmax(ftrain) (3)

where ftrain ∈ R denotes the frequency of the train data. It is
important to note that once the value of d ∈ R is determined
during training, this value will be used for data normalization
during actual dynamic predictions, ensuring that normalization
is carried out without relying on the global data distribution.

2) Physics-Informed Token Encoder: To capture the nonlin-
ear characteristics of the dynamics, we first develop a physics-
informed encoder. In this work, we establish the encoder using
a deep network [37], leveraging its ability to describe complex
nonlinearities. The proposed network architecture is primarily
composed of several feature processing branches, as shown
in Fig. 3; each dedicated to processing features of different
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Fig. 3. Diagram of the neural network for the physics-informed token encoder.

dimensions. This ensures that diverse features undergo distinct
processing, thereby facilitating a deeper exploration of the im-
pact of the coupling of different motion states on the dynam-
ics. Subsequently, we devise fusion and feature enhancement
modules to capture the intricate couplings among system states
and enhance nonlinear representation capability. Ultimately, this
process generates the single value of one dimension within the
output token, and several such networks collectively yield the
corresponding token.

Unlike other neural networks designed for sequential process-
ing [38], this proposed network processes single-point data and
aims to learn the mapping relationship from a single-point state
to a single-point token, effectively enhancing the model’s infer-
ence performance. Although this approach is more challenging
to train compared to data containing contextual information [39],
it reduces the need for extensive high-quality data collection, as
acquiring sequential data is more time-consuming.

To avoid periodic autoregressive outputs for periodic inputs
that fail to capture time-dependent creep dynamics, we extend
the motion state encoding with an additional time dimension to
describe the time-dependent dynamic characteristics

σi
t = hi(X

m
t , t), i = 1, 2, . . . ,m

θmt = [σ1
t , σ

2
t , . . . , σ

m
t ] (4)

where θmt ∈ R1×m is the physics-informed token at timestamp
t, and σi

t ∈ R and hi denote the ith dimension value of the token
and the network employed, respectively.

Furthermore, to ensure that the obtained tokens not only in-
corporate contextual dynamic state information but also possess
a global perspective to capture the rate-dependent characteristics
of the dynamics, we embed global physical information into the
tokens. By utilizing the dynamic equations as the optimization
objective and employing an unsupervised learning approach, the
generated tokens are endowed with global physical information
during the training process. Here, we utilize the simplified equiv-
alent linear system to capture the global dynamic characteristics,
ensuring the reversibility of the model

Ft = θmt Xm
t (5)

where Ft denotes the equivalent external force. To facilitate
control inversion, the external force is formulated as a quadratic

function of voltage, following the relationship between Maxwell
stress and the electric field intensity. Although this formulation
is not strictly accurate, the resulting error can be compensated
for by the physics-informed tokens on the right-hand side of the
equation

Ft = u2
t . (6)

To determine the optimal order of a linear system that most
accurately represents the global dynamic characteristics, we fur-
ther employ system identification techniques utilizing frequency
sweep response data. Moreover, the identified steady-state pa-
rameters can serve as boundaries for subsequent training, em-
bedding additional physical knowledge into the learning process
and enhancing both its stability and efficiency.

3) Dynamic Decoder: To obtain the motion state at the next
time step from the physics-informed tokens, we design a dy-
namic decoder to predict and decode the tokens. Employing
a conventional learning-based decoder would render the entire
modeling process irreversible, thereby introducing new chal-
lenges for control problems. To address this issue, we directly
use the simplified equivalent linear system from the encoder
and treat the tokens as time-varying parameters within the
linear system, which are regressed to solve the dynamics. By
combining the token generated from the current state with the
voltage input at the next time step, the next state can be obtained
using a single-step Runge–Kutta method, effectively achieving
prediction and decoding

θmt = ϕ(Xm
t )

fsolved =

[
X2:m

t ;
u2
t − θ1:m−1

t X1:m−1
t

σm
t

]

Xm
t+1 = RK4step (fsolved, X

m
t ,Δt) (7)

where fsolved denotes the right-hand side of the ODE, and
RK4step(·) denotes the fourth-order single-step Runge–Kutta
process, where the inner parameter presents the right-hand side
of the ordinary differential equation (ODE), the current state
vector, and the integration step size in order. This prediction
process is iteratively performed in an autoregressive manner, en-
abling the forward-generated dynamic response to be extended
indefinitely and enhancing model computational efficiency. By
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Fig. 4. Overall pipeline of the proposed hierarchical optimization training process.

leveraging state-dependent nonlinear pattern learning in token
generation and dynamic decoding, this method could avoid time
accumulation errors and achieve long-term prediction.

B. Data Preprocessing

To train the physics-informed encoder, we precollect the
frequency sweep response data of the DEA as well as the
dynamic responses to sinusoidal signals at several discrete fre-
quency points. The frequency sweep response data containing
the global dynamic behavior are used for the dynamic system
identification. The sinusoidal response data, which are fed to the
encoder, include the time-dependent characteristics of the output
response, specifically the creep behavior. In order to obtain an
m-dimensional description of the motion state, we employ a
numerical differentiation method to process the acquired dis-
placement signals

xi
t =

⎧⎨
⎩

xi−1
t −xi−1

t−1

δt t = 1, T

xi−1
t+1−xi−1

t−1

2δt t = 2, . . . , T − 1
for i = 1, . . . ,m.

(8)

To avoid the impact of experimental noise on high-order
difference mutations, we employ a fourth-order low-pass But-
terworth filter [40] after each differentiation step

H(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4
(9)

where H(z) is the transfer function of the digital low-pass
filter, and b0, b1, b2, b3, b4 ∈ R and a1, a2, a3, a4 ∈ R are the
filter coefficients. The filter coefficients are determined by the
normalized cutoff frequency.

C. Hierarchical Optimization Training

Based on the previously described encoder and decoder, the
details of the entire model construction process are illustrated
in Fig. 4. First, the precollected data are preprocessed. Then,
the sweep data are utilized to determine the basic dynamic
characteristics as well as the feature dimensions m and compute
the motion state Xm

t for the training data. The sinewave data are
used for training the encoder. To boost training efficiency, ensure
training stability, and embed the physics into the framework, a
hierarchical optimization training method is introduced.

The training process typically involves comparing the error
between ground truth and predicted values, and adjusting the
network parameters using gradient descent methods. However,
building on the previous physics-informed design, we need
to integrate the physical equations as the optimization target
within the encoder’s optimization process. Previous studies [31]
show that incorporating ODE solutions during training increases
memory usage and time complexity due to the serial nature of
ODE computations. In this work, we adopt the physics-informed
neural networks (PINN) approach [41], directly using ODEs in
the dynamic decoder as the optimization target for unsupervised
training. To compare the training efficiency between the con-
ventional supervised learning strategy involving ODE solution
and the proposed unsupervised scheme, we further analyze the
time complexity. Specifically, we assume the availability of a
computing device capable of accommodating all data in parallel.
Under this assumption, the time complexity of both methods can
be expressed as follows:

Osupervised = O(A) +O(kBT )

Ounsupervised = O(A)

Osupervised ∝ T. (10)
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From (10), the complexity is proportional to the time series
length due to the serial nature of ODE computations. In addi-
tion, during backpropagation, computing the gradients of the
ODE adds further time cost. Based on this, the unsupervised
PINN approach offers better feature extraction under limited
resources by embedding physical information directly into the
encoder. However, using the equation for supervised learning
may cause training oscillations, as the token and motion state
are multiplicatively related in the loss function as described in
the following:

∂L
∂σi

t

= Wxi
t, σ

i
tx

i
t ∈ [p, q] (11)

where W denotes the gradient product of each layer of the
neural network, and p and q are two constants near u2

t . During
backpropagation, the update to the token is scaled by the current
motion state value. High-frequency motion generates larger
high-order derivatives xi

t, while the corresponding token σi
t

should have a smaller magnitude to maintain balance. However,
large gradients during tuning cause improper token updates,
hindering small-range adjustments. To address this issue, we reg-
ularize the motion state by multiplying it with the corresponding
coefficient from the data preprocessing of the motion state in the
loss function.

During the optimization of network parameters under phys-
ical law supervision, certain generated tokens may steer the
ODE solution toward a local optimum. This would introduce
oscillations in the training process and result in divergence
of the ODE solution. This behavior is discussed in detail in
Section IV. To mitigate this issue, we introduce soft constraints
into the loss function as shown in (12). The neighborhood of
the dynamic equivalent constant parameters in dynamic system
identification through sweep signals is used as the range for
token values. While values outside this range are permitted if
they lead to improved performance, they incur a penalty in
the loss function. This approach balances the exploitation of
parameters within a narrow range inside the defined boundaries,
along with exploration beyond the range. By tuning the penalty
coefficients appropriately, the model maintains its exploration
potential while avoiding convergence to suboptimal solutions

L = L1(u
2
t , ϕ(X

m
t )) + L2(τ(X

m
t ))

L1 = SmoothL1Loss(u2
t , θ

m
t Xm

t )

L2 =
1

m
(α||ReLU(θmt −P)||1 + β||ReLU(Q− θmt )||1)

(12)

where L denotes the loss function, α, β ∈ R are the penalty co-
efficients, P,Q ∈ Rm×1 are the upper bound and lower bound,
respectively, and τ denotes the calculation of the loss between
the output token and the bounds. The boundaries are determined
by enlarging and shrinking the identification results by a certain
proportion.

To determine the appropriate boundaries for tuning within
the defined range, we further employ a hyperparameter op-
timization strategy. Once the loss stabilizes after several
training iterations, the tuning boundaries are expanded to
explore the hyperparameter values further. The learning rate and

Algorithm 1: Hierarchical Optimization Training Process.

1: Input: Identification result y ∈ Rm×1, dataset D,
deep learning model ϕ, initial learning rate lr, training
epochs n, decay factors c < 1, r < 1, boundary factors
a > 1, b < 1, threshold ε.

2: Initialize j = 0, optimal loss Lbest = ∞, optimal
boundary B = [0, 0], optimal model ϕbest.

3: while stop = False do
4: Calculate boundary Q = bj+1y,P = aj+1y.
5: for i=1 to [n ∗ rj ] do
6: Train ϕ with dataset D and learning rate lr ∗ cj

and calculate loss L(D,ϕ) with boundary P, Q.
7: if Lbest − L < ε and i > 1 then
8: stop = True.
9: Break.

10: end if
11: if L < Lbest then
12: Update Lbest = L, B = [Q,P], ϕbest = ϕ.
13: end if
14: end for
15: end while
16: Save best model ϕbest and best boundary B.

training epochs are reduced to prevent disrupting the original
learning results and prevent the model from getting stuck in
a local optimum. The termination condition for tuning is that
the model’s loss no longer decreases after the second training
epoch following each boundary expansion. The detailed training
process is described in Algorithm 1.

D. Feedforward Control Strategy

Building upon the previously established dynamic model, a
feedforward control strategy can be developed. As discussed
in the preceding section, the developed dynamic model incor-
porates control requirements and adopts a relatively simple,
reversible ODE formulation. Therefore, the inverse model is
directly utilized as the feedforward control strategy to preplan
the input voltage. Once the target trajectory and its correspond-
ing motion state curves are computed, the motion state sequence
can be directly input into the following equation to determine
the required feedforward voltages:

θ̂mt = ϕ̂(X̂m
t )

ut = sgn(θ̂tX̂m
t )

√
θ̂tX̂m

t (13)

where X̂m
t and θ̂t represent the tracking motion state and

the corresponding physics-informed tokens generated by the
trained model, respectively. The actuation behavior of the DEA
remains unaffected by the sign of the applied voltage due to its
square-law electromechanical response. To ensure mathematical
consistency, we adopt the sign function to only generate positive
voltage. Due to the strong nonlinear descriptive capability and
simple reversible form of the dynamic model, the proposed
feedforward method enables the calculation of control voltages
without the need for feedback information.
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III. EXPERIMENT VALIDATION

A. Design and Fabrication of DEAs

To demonstrate the versatility of the proposed framework,
we select conical DEAs under different loads and high power
density DEA. The conical DEA is constructed with a single-layer
acrylic elastomer, which results in large deformation and high
viscoelasticity in the actuator. In contrast, the high power density
DEA is made from a multilayer silicone elastomer, which leads
to lower viscoelasticity, higher natural frequencies, and more
intense mechanical vibrations in the actuator. The main structure
and fabrication process are detailed below.

As for the fabrication of conical DEAs, it mainly consists
of a prestretched elastomer membrane, compliant electrodes,
and a stiff frame. The elastomer membrane (3 M VHB 4910,
initial thickness: 1 mm) is equiaxially stretched at a ratio of 3,
and a disk is fixed at the center of the membrane to connect
the end effector (with a mass of 100, 122, or 150 g). To hold
the membrane, the laser-cut frame is fabricated. The carbon
grease (MG Chemical 846-80 G) is coated on both interfaces
of the membrane, serving as the compliant electrodes. When the
high-voltage signal is applied to the electrodes, the membrane
undergoes expansion, which is constrained by the fixed frame
and subsequently converted into a single-degree-of-freedom
motion to drive the end effector.

The fabrication of high power density DEAs involves two
main steps: 1) creating multilayer DE films and 2) roll-
assembling them. A seven-layer DE film stack consists of al-
ternating DE films (20 μm for outer layers and 40 μm for
inner layers) and six electrode layers. The process begins with
blade-coating a prepolymer solution (4 mm/s, 40 μm gap)
onto a polyethylene terephthalate (PET) substrate, followed
by degassing and curing. Patterned carbon nanotubes (CNT)
electrodes (100 mm × 8 mm) are stamped onto the film. This
layering repeats until seven layers are achieved. For assembly,
laser-cut strips are peeled from the PET substrate. The film is
soaked in ethanol and rolled onto an ethanol-coated acrylic rod
(3.5 mm diameter) to form a 150-layer actuator. After drying,
conductive silicone and carbon fiber plates with copper tape are
applied for electrical contacts.

B. Experimental Setup

All training processes of the physics-informed token encoder
and dynamic prediction procedures are conducted utilizing the
PyTorch framework and are performed on a computational plat-
form equipped with a GeForce RTX 3090 GPU and a 24-core
CPU. The experiment is conducted with the experimental setup
shown in Fig. 5(c). The dSPACE (dSPACE Microlab 1202) is a
control module with a 16-bit analog-to-digital converter and a
16-bit digital-to-analog converter that captures the measurement
signals and generates the voltage signals to the high-voltage am-
plifier. The high-voltage amplifier (Trek 10/10B-HS) amplifies
the received control signal by a factor of 1000 and applies it
to the DEA. The laser sensor (Keyence LK-H085) records the
displacement of the DEA in the range of −20 to 20 mm with
a sampling rate of 20 kHz. The sampling rate of the system is

(a) (b)

(c)

Fig. 5. Experimental setup. (a) Conical DEA. (b) High power density DEA.
(c) Experiment equipment.

set to be 1 and 5 kHz for the conical DEA and the high power
density DEA, respectively.

C. Dataset for Training

The precollected dataset for modeling is primarily divided
into two parts: one consisting of frequency sweep signals
with the corresponding dynamic states for dynamic system
identification and the other comprising sinusoidal signals and
their dynamic responses for training

usweep = A1sin

(
π

(
fend − fstart

T
t+ 2fstart

)
t− π

2

)
+A2

usin = A3sin
(
2πft− π

2

)
+A4 (14)

where T denotes the lasting time of the sweep signal, and
A1 and A3, and A2 and A4 are the amplitude and the offset of
the signals, respectively. fstart and fend represent the start and the
end frequency of the sweep signal, respectively.

The (fstart, fend, T, A1, A2) is set to be (0.01 Hz, 20 Hz, 200 s,
3 kV, 3 kV) for the conical DEA and (0.01 Hz, 180 Hz, 90 s,
700 V, 700 V) for the high power density DEA. During the
actual training process, to supplement the nonlinear information
related to frequency and amplitude variations in the dynamics,
several sets of sinusoidal signals with different amplitudes and
frequencies are collected for calibration. For the conical DEA,
A3 is set to {1 kV, 2 kV, 3 kV}, and A4 is set to be 3 kV.
For each group, the sampled frequency is from 1 to 10 Hz
with the 1-Hz step. For the high power density DEA, A3 takes
values from {200 V, 350 V, 500 V}, and A4 is set to be 700 V.
For each group, the sampled frequency is from 5 to 130 Hz
with the 5-Hz step. The total number of subsets for the conical
DEA is 30 and for the high power density DEA is 78. To avoid
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Fig. 6. Dynamic system identification results of four different configurations of DEAs. The input is the sweep signal within the working frequency interval.

measurement interference caused by heat generation from 10-s
DEA motion between successive measurements, a 20-s interval
is introduced between each measurement for the conical DEA
and high power density DEA to ensure that the DEA returns to
its original still state before the next data acquisition. Therefore,
the total dataset size for the conical DEA is 900 000, while for
the high power density DEA, it is 1 170 000. For each type, the
data collection time does not exceed 20 min. The maximum
working frequency of the DEA is determined by its mechanical
structure and material. Accordingly, the operating frequencies in
the experiments are selected within the feasible working range
of each actuator (e.g., 10 Hz for conical DEAs and 130 Hz for
the high power density DEA used in this work), as the output
performance may deteriorate significantly once the frequency
exceeds this limit. All subsequent dynamic modeling and control
experiments are conducted within this operating range.

D. Dynamic Modeling Validation

The encoder is trained on the precollected dataset to perform
dynamic prediction. The training hyperparameters are set as
follows: number of steps n = 10, learning rate lr = 10−3, coef-
ficients c = 0.8, r = 0.971, a = 1.2, and b = 0.8, and penalty
coefficients α = β = 2. The penalty coefficients were selected
by observing the relative magnitude of L2 with respect to L1

during the initial training epochs. This strategy prevents scale
imbalance during optimization, thereby avoiding bias toward
one objective while neglecting the other. For the model con-
figuration, the hidden size is set to 128, the number of layers
to 2, and the dropout rate to 0.4. The dynamic system identifi-
cation is conducted by the tfest MATLAB function, as shown
in Fig. 6. The accuracy is quantitatively characterized by the
mean absolute error between the frequency sweep response of
the optimally identified system and the actual physical response
under the same sweep input. The optimal dimensions of the
token are 3 and 4 for conical DEA and high power density DEA,
respectively. When the original system is subjected to additional
loads, its dynamics change, leading to reduced identification
accuracy, while the optimal model order remains unchanged
under these conditions. Therefore, the order of the dynamics and
the system complexity are primarily determined by the material
properties and configurational nonlinearities of the actuator it-
self. However, the nonlinearity of the neural network could still
compensate for this loss. Then, the training is conducted based

Fig. 7. Output physics-informed tokens with the trained model for the high
power density DEA corresponding to the 40-Hz sine input voltages.

on the identification results, including the optimal boundaries
and the optimal order of the dynamics. The training process can
be paralleled through the GPU, leading to the short training time
(< 5 min), occupying less than 3 GB for the high power density
DEA dataset.

After training, the model generates the corresponding
physics-informed token based on the initial state input. The
token information from the experiment is shown in Fig. 7. On
the one hand, the learned tokens in the figure exhibit periodicity,
which corresponds well with the periodic sinusoidal input. On
the other hand, the tokens show two distinct phases: an initial
transition phase and a subsequent stable phase, aligning with
the initial excitation and steady-state vibration behavior of the
real motion states. It demonstrates that our training effectively
embeds physical prior information and extracts dynamic char-
acteristics. It also demonstrates that constant parameters cannot
accurately describe the dynamic characteristics.

The physics-informed token along with the current input
voltage is used for ODE-based decoding to predict the next
motion state autoregressively. To quantitatively describe the pre-
diction performance, the evaluation metric used here is relative
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(a)

(b)

(c)

(d)

Fig. 8. Model prediction results of different DEAs at different frequencies. (a) High power density DEA. (b) Conical DEA with 100 g load. (c) Conical DEA
with 122 g load. (d) Conical DEA with 150 g load.

root-mean-square error

erms =

√
1
N

∑N
i=1(xp − xe)2

max(xe)− min(xe)
(15)

where N is the quantity of the data, and xe and xp are the
experimental and the predicted displacement, respectively.

The results shown in Fig. 8 illustrate the predicted outcomes
for different configurations and loads at various frequencies. The

natural frequencies are 3.7 and 7.4 Hz for the conical DEA with
100 g, and 68 and 142 Hz for the high power density DEA.
The input waveforms are sinusoidal signals, whose value range
and frequency are specified in the figure. The initial phase is
−π

2 . Our predictive experimental results show that accurate dy-
namic predictions can be achieved over a wider frequency range
(1–130 Hz). High-frequency operation of high power density
DEAs entails more complex dynamic characteristics. Achieving
accurate predictions at 130 Hz demonstrates that our method
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TABLE I
PREDICTION ERRORS AT DIFFERENT FREQUENCIES

Fig. 9. Model prediction results of conical DEA with 100 g corresponding to the input 8 Hz sine waves with different amplitudes.

can effectively capture mechanical resonance, rate-dependent
hysteretic viscoelasticity, and their coupled nonlinearities under
high-speed operation. By embedding physical knowledge to
capture global frequency-domain information and using training
data to learn time-domain features, the model can efficiently
utilize limited data while ensuring accurate modeling across a
wide frequency range.

When the conical DEA is subjected to external loads, its
natural frequency further decreases, and the resonance effect
also weakens, as shown in Fig. 6. When the load is too large (such
as 150 g), only a single resonance peak remains on the frequency
sweep curve, and a second, larger resonance peak cannot be
generated under the load. Nevertheless, as illustrated in Fig. 8,
the proposed model still achieves high predictive accuracy
even under such conditions. This demonstrates its powerful
nonlinear modeling capability to capture severe nonlinearities
induced by heavy loads. Moreover, as corroborated by the linear
model identification results in Fig. 6, its accuracy does not
constrain the overall performance of the proposed framework.
The network complements the unmodeled nonlinear dynamics
through learning-based tokens, effectively compensating
for these discrepancies by leveraging its strong nonlinear
fitting capability. These results collectively verify that the
proposed modeling framework maintains high predictive
accuracy across DEAs with substantially different geometries,
materials, and structural configurations, demonstrating strong
cross-configuration generality.

The detailed results can refer to Table I. The corresponding
amplitudes of the input signals range from 1000 to 5000 V for the
conical DEA and from 200 to 1200 V for the high power density
DEA. High-precision predictions across different configurations

Fig. 10. Hysteresis loop prediction results for the conical DEA with 100 g
load.

in a wide band are achieved, validating the versatility of our
model. The proposed model combines simplicity with powerful
descriptive capability, effectively overcoming this limitation and
providing a solid foundation for feedforward control. Further-
more, we test the model’s ability to describe the nonlinearity of
amplitude variations, as shown in Fig. 9.

Meanwhile, Fig. 10 is an example demonstrating that the
proposed model can accurately predict the hysteresis loop and
describe rate-dependent hysteresis. This is beneficial when in-
verting the model for control, as it allows for the direct elimina-
tion of rate-dependent hysteresis nonlinearities.

A comparative experiment is further conducted between our
model and the existing wide-band general dynamic models for
control [26], [42]. The trajectories in Fig. 11 were included in
the training set, and the comparative methods were trained and
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Fig. 11. Model prediction results at 110 Hz for the high power density DEA using different methods.

TABLE II
TRACKING ERRORS AT DIFFERENT FREQUENCIES

executed using the same data, ensuring a fair and consistent com-
parison. The results shown in Fig. 11 demonstrate that existing
methods are unable to provide accurate dynamic predictions at
high frequencies—particularly in the case of high power density
DEAs, where dynamic coupling and vibrational modes become
significant. These results suggest that our proposed approach
may offer a potentially useful alternative for modeling DEAs in
high-frequency operating regimes.

E. Control Experiment

Based on the established dynamic model, we can directly
invert it for feedforward control of the DEA. Under our exper-
imental configuration, generating 120 000 feedforward voltage
values required approximately 28.29 ms for the neural network
computation and 0.61 ms for the inverse model computation.
To verify the effectiveness of the inversion method, we first
conducted validation in simulation. As shown in Fig. 12(a),
the inverted voltage curve exhibits a clear creep-compensating
trend. This voltage sequence was then input into the original
forward model. Fig. 12(b) shows the small error between the
desired displacement and the simulated displacement, which
corresponds to the voltage generated from the desired dis-
placement. It demonstrates the effectiveness of the proposed
inversion method for feedforward voltage generation. It also
demonstrates the capability of the proposed method to generate
long-horizon control sequences and achieve long-term predic-
tion. The voltages obtained from the inversion are applied to the
actual actuator for feedforward control without adaptation, and
the tracking results are shown in Fig. 13. The detailed results are
listed in Table II. This indicates that our feedforward control can
achieve high-precision trajectory tracking at different frequen-
cies without error feedback. Its generality is further validated

(a)

(b)

Fig. 12. Long-time prediction results of conical DEA with 100 g at 8 Hz.
(a) Generated voltages. (b) Predicted displacements of generated voltages.

by the consistent performance observed across actuators with
different configurations. This simple inversion method enables
accurate trajectory tracking, further confirming that the proposed
approach can effectively describe the real dynamic character-
istics. It is worth noting that the tracking accuracy exhibits a
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Fig. 13. Experimental results at different frequencies of the conical DEA with 100 g load and high power density DEA through feedforward control.

Fig. 14. Experimental results at different frequencies of the conical DEA with 100 g load through feedforward control and PI controller.

slight decline at higher frequencies, especially near 130 Hz. This
behavior can be attributed to the approach toward the upper
boundary of the trained frequency range in combination with
the amplification of model uncertainties under high-dynamic
conditions.

In the open-loop control results for the conical DEA, the
error increases significantly with the increase in frequencies.
The control error may arise from the time-varying nature of the
DEA, model uncertainties, measurement errors, and the shift
in the DEA’s equilibrium position. This is further evidenced
by the noticeable deviation of the average error trend. To fur-
ther compensate for the steady-state offset, the PI controller
(P = 0.1, I = 0.3) is utilized on top of the original open-loop
sequence, and the results are shown in Fig. 14. The results
show that the steady-state error is significantly reduced, and
the motion control accuracy is further improved. This result
further indicates that the observed error does not originate from
the inherent nonlinearity of the DEA dynamics, since a PI
controller alone is incapable of compensating for rate-dependent
viscoelasticity [43]. It demonstrates that the proposed feedfor-
ward control strategy effectively compensates for the nonlinear
dynamic characteristics of the DEA.

To further verify the control strategy’s generality, we conduct
trajectory tracking on a conical DEA with different constant
loads (see Fig. 15). Despite significant changes in dynamic
characteristics due to the added load, the method still accurately
models the dynamics through training, generating effective feed-
forward control voltages. To quantitatively describe the extent of
hysteresis, we further introduce the relative maximum hysteresis
error (RMHE) metric [44]

ermhe = max

(∣∣∣∣ emhe(xe)

max(xr)− min(xr)

∣∣∣∣
)

emhe(xe) = max(xr(xe))− min(xr(xe)), (fC(xe, xr) ≤ 0)
(16)

where emhe denotes the maximum vertical difference of the
points inside the hysteresis loop. fC represents the enclosed
hysteresis loop. xe and xr are the experimental and the reference
displacement, respectively. The results in Fig. 16 illustrate the
hysteresis loops at different frequencies after compensation by
feedforward control. It demonstrates that the proposed method
effectively compensates for the rate-dependent hysteresis of the
DEAs, achieving a linearized relationship between the actual
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Fig. 15. Experimental results of trajectory tracking for the conical DEAs with different constant loads through proposed feedforward control strategy.

(a)

(b)

Fig. 16. Compensated hysteresis loop of the DEAs through feedforward
control within one cycle. The percentage values in the figure represent the RMHE
of the corresponding hysteresis loops. (a) High power density DEA. (b) Conical
DEA with 100 g load.

displacement output and the desired input trajectory. In addition,
Fig. 17 presents the sine trajectory tracking performance over
a 50-s duration. Throughout the tracking process, the displace-
ment error remains consistently bounded without noticeable drift
or accumulation, providing strong evidence that the open-loop
model successfully compensates for viscoelastic creep effects
even in the absence of real-time sensor feedback.

To further evaluate the generalization capability enabled by
our physics-informed framework, we conducted tracking exper-
iments on complex trajectories featuring waveforms, frequen-
cies, and amplitudes absent from the training set. As shown in

Fig. 17. Tracking result of a 50-s duration of the conical DEA with 100 g load
through the proposed feedforward control at 0.5 Hz.

Fig. 18, the feedforward voltages—generated directly by the
trained inverse model without additional adaptation—achieve
precise compensation and accurate tracking across varying mo-
tion ranges and speeds. This capability confirms effective control
over unseen trajectories. More importantly, such performance
demonstrates that embedding global frequency-domain dynam-
ics as physical constraints during token initialization enables
generalization beyond the training data, thereby reducing the
model’s reliance on exhaustive data.

IV. DISCUSSION

In this section, we further conduct the ablation study to inves-
tigate the effect of scale normalization, dynamic system identi-
fication, and soft constraints. We define the three variants of the
PITP-based dynamic model. 1) No limit: The original algorithm
architecture remains unchanged, with the regularization term τ
on the training rangeP,Q removed from the loss function. 2) No
scale: The original algorithm architecture remains unchanged,
with no

√
d normalization applied to the training data before

they are input into the network. The ablation study is conducted
on the conical DEA with 100 g load dataset.

The loss curve during the training process is shown in Fig. 19.
The No scale method exhibits a large loss during the initial
training, failing to converge quickly, and the loss remains at a
relatively high value upon convergence. This is due to the large
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(a)

(b)

Fig. 18. Experimental results of tracking complex trajectories through proposed feedforward control strategy. (a) Results of the conical DEA with 100 g load.
(b) Results of the high power density DEA.

Fig. 19. Training loss curves of the proposed method and its two variants.

magnitude of the motion state, which causes the tuning step to
exceed the range of the token itself. As a result, the product
term in the entire supervised equation becomes much larger
than u2

t , causing the gradient descent process to fail. It further
validates that the proposed “scale” method effectively facilitates
rapid convergence during training and prevents training failure
caused by gradients exceeding the allowable range of the tokens.
However, it is important to note that standard normalization
methods employed in conventional training strategies, including
min–max and z-score, are not suitable in this case. This is be-
cause, during prediction, the global distribution of the dynamic
states is unknown, preventing reliable estimation of the data
range. The proposed scale normalization method can address this
issue. Although this method cannot precisely normalize signals
across all frequencies to a more consistent range, it effectively
ensures that the predicted data remain within the same order

of magnitude to improve the training effectiveness, which is
validated in the study.

Fig. 20 shows the prediction results of the models trained
using three different methods at 3 Hz. The No scale method
fails to converge to the correct optimal range, as the large token
values lead to divergence when solving the ODE to predict the
dynamic curve. This results in the model’s prediction deviating
significantly from the expected dynamic behavior. For the No
limit variant, this approach corresponds to the conventional
deep neural network training method, where network weights
are freely optimized. As shown in the results, the initial phase
of prediction closely follows the dynamic curve, indicating
accurate early-stage estimation. However, as the prediction pro-
ceeds, the dynamic behavior gradually drifts, and the accuracy
deteriorates. This occurs because, without soft constraints, the
model outputs are no longer bounded. Consequently, even small
deviations between the predicted and actual motion states can
produce inaccurate tokens. These tokens then propagate through
the system, causing the model output to diverge at certain
points and ultimately resulting in poor predictions. This further
underscores the importance of incorporating soft constraints
into the model. The proposed soft constraints serve to embed
physical prior knowledge, ensuring that the model’s predictions
stay within reasonable bounds. By constraining the outputs to
a certain degree, these constraints enhance the model’s ability
to converge and maintain accuracy throughout the prediction
process, highlighting their essential role in improving model
stability and predictive performance.

To further validate the importance of physical prior knowl-
edge in the model, we replace the optimal dynamic system
identification part of the model with a simple identified second-
order dynamic system. After training, the results obtained by
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Fig. 20. Prediction results at 3 Hz through the proposed method and its two variants.

(a)

(b)

Fig. 21. Prediction results of the conical DEA with 100 g load through the
proposed method with second-order dynamic system identification instead of
the optimal dynamic system identification. (a) 3 Hz. (b) 5 Hz.

testing the model in this scenario are shown in Fig. 21. Despite
the powerful nonlinear capabilities of the neural network, the
second-order dynamic system still fails to accurately describe
certain frequencies. It further illustrates that a mismatched phys-
ical architecture can lead to the failure of the method, thereby
validating the necessity of embedding optimal dynamic system
identification within the approach.

Benefiting from the effective integration of global physical
priors and data-based learning approaches, our method can
accomplish complex dynamic modeling tasks in a short time,
providing the possibility of broadening the application of DEAs.
The proposed framework enables rapid data collection and

efficient training, which is particularly advantageous for model-
ing and controlling nonstandardized DEA devices. Moreover,
the simple feedforward control strategy developed upon this
framework ensures accurate control performance without rely-
ing on real-time sensor feedback, thereby simplifying hardware
requirements and extending potential deployment scenarios.

It should be noted that this work mainly adopts a feedforward
control strategy to verify the effectiveness of our dynamic mod-
els. As a result, it may suffer from deteriorated performance
under varying loads, external disturbances, or continuously
changing operating conditions. In our future work, we will focus
on incorporating closed-loop strategies on top of the proposed
model to enable robust adaptation to varying task conditions
and to further extend its practical applicability. Leveraging the
high computational efficiency of our inverse feedforward voltage
design, we intend to implement the algorithm in the real-time
control system to support sustained long-duration tracking con-
trol. Moreover, when DEAs undergo stiffness degradation or
fatigue, the current model may become invalid. In such cases,
embedding a fatigue-damage model into the framework could
help extend the effective control lifespan of DEAs and broaden
the range of potential applications. This direction will also be
included in our future work. In addition, the applicability of
this method may provide a feasible approach for modeling
single-input-single-output nonlinear dynamic systems, although
this versatility still requires further validation. Moreover, ex-
tending the framework to multi-input-multi-output systems with
cross-coupled nonlinearities has not yet been addressed and
remains an open challenge. In future work, it would also be
worthwhile to incorporate additional physical quantities, such
as temperature, pressure, or velocity, which may influence the
physical properties of the material [45]. It may further enhance
the model’s adaptability and multitasking capability.

V. CONCLUSION

In this work, we propose a PITP framework for dynamic
modeling and feedforward control of DEA. The dynamic pro-
cess is decomposed by encoding, predicting, and decoding the
physics-informed tokens. First, the neural network encoder is
established through the precollected dynamic response data.
Then, the sweep data are utilized to identify the simplified
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equivalent linear model, which contains the global dynamic
characteristics. By integrating dynamic system identification
results for unsupervised learning of the encoder, we improve
training efficiency and embed physical prior into tokens. A
hierarchical optimization training strategy is further applied,
gradually adjusting the physical boundaries to balance parameter
exploration and training stability. Once trained, the physics-
informed tokens can be autoregressively solved for dynamic
model prediction and used to calculate the inverse model for
feedforward control. Experimental results of several DEAs with
different configurations and payloads demonstrate that the in-
vertible dynamic model can precisely describe the nonlinear
dynamic characteristics of the DEAs and be used for the accurate
high-speed feedforward tracking control of different trajectories.
In addition, the low time cost of the general dynamic model
establishment further validates the effectiveness and versatility
of the proposed framework.
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