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Abstract
Accurate and computationally efficient models of soft pneumatic actuators are crucial for
utilizing their compliance in various fields. However, existing research primarily relies on the
piecewise constant curvature assumption or the quasi-static assumption, only valid in limited
situations. In this paper, we present a dynamic model based on absolute nodal coordinate
formulation (ANCF) that simultaneously accounts for variable curvature deformation and
dynamic properties. To this end, deformed configurations of soft pneumatic actuators are firstly
discretized into ANCF-based beam elements. Based on this parameterization method, the
dynamic model is derived by the principle of virtual work. After identifying model parameters,
Newmark algorithm is utilized to solve the dynamic model in real-time, averagely consuming
6.76 s of a 10 s simulation. The derived dynamic model is experimental verified using a soft
pneumatic actuator. The experimental results demonstrate that the maximum simulation errors
of the tip remain below 2.5% of the actuator’s length when the actuator is subjected to various
pressure and tip loads. In addition, the overshoot behavior and period of vibration in the
oscillations are also predicted by the dynamic model. Moreover, the dynamic model exhibits an
average 46.53% reduction in simulation error compared with the static ANCF-based model.
Overall, this work paves the way to a deeper insight to dynamic motion analysis of soft
pneumatic actuators.

Keywords: soft pneumatic actuator, dynamic modeling, real-time simulation,
absolute nodal coordinate formulation

1. Introduction

Soft actuators made from elastic materials exhibit superior
flexibility and compliance compared to traditional rigid robots
[1–3]. These inherent characteristics endow soft actuators with
substantial potential across diverse domains [4–7]. Dynamic
models are essential for widening soft actuators’ applica-
tions because of their usage in dynamic simulation, design

∗
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validation, and controller designs [1, 8]. Due to their con-
tinuous deformation without discrete joints, the efficient
and accurate dynamic simulation of soft actuators is still
challenging.

For soft actuators with infinite degree of freedom, the
most-adopted dynamic modeling method is finite element
method (FEM). In FEM, the dynamic model is calculated
by numerically integrating forces through all elements and is
expressed by a set of ordinary differential equations (ODEs).
Commercial FEM software (such as Abaqus and ANSYS
[9–11]) and open-source FEM packages (such as SOFA [12]

1 © 2024 IOP Publishing Ltd
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and Sorotoki [13]) are wildly employed to investigate the
dynamic response of soft actuators. However, accurately sim-
ulating large deformation necessitates massive elements and
small step sizes, leading to a heavy computation burden of
FEM [14].

To enhance the computational efficiency, some analyt-
ical modeling techniques simplify soft actuators’ shapes into
slender rods with constant cross sections. Generally, these
models can be roughly classified into two categories, i.e. piece-
wise constant curvature (PCC) models and variable curvature
models. The well-known PCC models describe actuators’
shapes by a series of circular arcs, and each arc is defined
by three coordinates (i.e. curvature, curve length, and bending
angle) [15]. By incorporating the PCC theory with the pseudo-
rigid-body model or the lump section model [16, 17], dynamic
models of soft actuators are derived in the form of second
order ODEs. This method significantly reduces the number
of configuration parameters, thus effectively decreasing cal-
culation time. Despite these advantages, the PCC assump-
tion is frequently violated in practical scenarios, especially
when external forces (such as gravity and tip loads) are non-
negligible.

To overcome the limitation of the PCC assumption, vari-
able curvature models are proposed. These models are gener-
ally based on classic beam theories (such as Euler–Bernoulli
beam theory [18] and Kirchhoff beam theory [19]) or con-
tinuum mechanics (such as Cosserat Rod theory [20]). By
establishingmechanical equilibrium equations for an infinites-
imal section, the dynamic models are expressed by high order
PDEs in terms of time and reference arc length [21]. Extensive
calculation algorithms are proposed to solve these dynamic
models. For example, integration along the length and the
time are calculated by fourth-order Runge Kutta and BDF-α
algorithm, respectively [20]. Moreover, through the geometric
variable-strain or piecewise constant-strain approach [22, 23],
the Cosserat rod-based model is reduced to a set of ODEs and
further calculated by Runge Kutta algorithms. In summary,
most existing dynamic models focus on improving predic-
tion accuracy by discretizing soft actuators into small elements
[24, 25]. Notably, these menthods usually increase computa-
tion burden and lead to low computation efficiency. Althought
some models also try to reduce the computation time, they
generally rely on some impractical simplifying assumptions
such as neglecting external forces [26] or actuation forces [27].
Therefore, it is still elusive to achieve computationally effi-
cient simulation without the cost of model complexity and cal-
culation inaccuracy.

Besides the mentioned variable curvature models, another
continuum-based modeling approach, absolute nodal coordin-
ate formulation (ANCF), has recently emerged for soft actu-
ator modeling [28–30]. This model demonstrates both predic-
tion accuracy and computational efficiency for various kinds
of soft actuators (such as soft continuum actuators [28], soft
parallel actuators [29], and soft bellow actuators [30]). The
state-of-the-art ANCF models of soft actuators mainly focus
on static analysis [28–30] or the theoretical presentation of
dynamic cases [31]. Inspired by these achievements, we aim to

take a further step by deriving an ANCF-based dynamic model
for soft actuators and then verify it experimentally.

In this paper, we extend our previously proposed static
model [28] into a dynamic model which further takes the
inertia forces and the damping forces into consideration. To
this end, variable curvature configurations of soft actuators
are firstly parameterized by ANCF method. Then, an ordin-
ary differential dynamic model is derived, which incorporates
static forces, inertial forces, damping forces, and boundary
constraints (BCs). To identifying model parameters, a series
of experiments are designed and conducted. With determ-
ined parameters, the Newmark method is utilized to solve the
developed dynamic model in real-time, consuming 6.76 s of
a 10 s dynamic simulation. The simulation accuracy of the
developed dynamic model is experimentally verified using a
soft actuator. The experimental results demonstrate that, when
actuated by sinusoidal control pressure, the dynamic model
can achieve an average 46.53% reduction in average simula-
tion error compared with the ANCF-based static model. Under
the sweep frequency control pressure, the simulation error of
the tip is less than 2.5% of the soft actuator’s length. When
subjected to complex actuation pressure and varying tip loads,
the maximum simulation error is approximately 2% of the soft
actuator’s length. In addition, the dynamic model is capable of
simulating the transition stage after releasing a tip load.

The main contributions of this work are summarized as
follows.

(1) We present a ANCF-based dynamic model for a vari-
able curvature soft pneumatic actuator. The derived model
incorporates inertia dynamics and damping forces which
quasi-static models typically neglect. Further, we employ
an implicit integration algorithm to enable real-time
dynamic simulation.

(2) We design parameter identification experiments for the
bending stiffness, the damping coefficient, and dynamic
simulation parameters. Based on the identified paramet-
ers, the developed dynamic model is experimentally veri-
fied using soft pneumatic actuators.

The reminder of this article is organized as follows.
Section 2 presents the applied soft actuators and derives the
dynamic model based on ANCF. Section 3 introduces the
numerical calculation algorithm. In section 4, parameter iden-
tification experiments and model validation experiments are
presented. Section 5 concludes this article.

2. Dynamic modeling of soft pneumatic actuators

In this section, we firstly introduce the structure and cross-
sectional parameters of the applied soft pneumatic actuators.
Then, we explicitly explain the ANCF-based parameteriza-
tion of the variable curvature configurations and then derive
the dynamic model. Finally, the calculation algorithm of the
derived dynamic model is presented.
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Figure 1. (left) Schematic illustration of the applied soft pneumatic
actuator. (right) The cross section and geometric parameters
presented.

2.1. Structure of soft pneumatic actuators

The applied soft actuator (shown in figure 1) is composed
of two soft fiber-reinforced bending actuators. By inflat-
ing one chamber, the soft actuator can present bidirectional
bending. Each fiber-reinforced bending actuator is fabric-
ated through molding the inner rubber tube (Elastosil M4601,
Wacker Chemie AG, Germany), fiber winging, and molding
the outer rubber tube [28]. Then, two soft fiber-reinforced actu-
ators, an inextensible layer between them, and two resin caps
are assembled using silicon adhesive (Sil-Poxy, Smooth-on,
USA). The length L of the soft actuator is 175 mm. The geo-
metrical parameters of the cross-section (shown in figure 1) are
R1 = 9 mm, R2 = 6 mm, and t = 9 mm. Bending is the main
deformation for this soft actuator, and torsion and shearing can
be neglected [28].

2.2. Kinematics

To parameterize the configuration of the deformed soft actu-
ator, we employ the ANCF method. In principle, a soft actu-
ator is discretized into n elements by (n+ 1) nodes which
are set along the centerline of the soft actuator (as illustrated
in figure 2). The i-th element starts from the i-th node and
terminates at the (i+ 1)-th node. In the i-th element with
an undeformed length L, the global position of an arbitrary
point r(x) ∈ R2 is a function of the arc length x ∈ [0,L] which
is defined in the underformed configuration. In the ANCF
method, the generalized coordinates of the i-th node qi ∈
R4and (i+ 1)-th node qi+1 ∈ R4 are{

qi =
[
rT (0) rTx (0)

]T
qi+1 =

[
rT (L) rTx (L)

]T , (1)

where ()x denotes a derivative with respect to x [32]. The
generalized coordinate of the i-th element qi ∈ R8 can be
written as

qi =
[
qTi qTi+1

]T
=
[
qi1 · · · qi8

]T
. (2)

Figure 2. Schematic illustration of the configuration description of
the soft actuator based on ANCF. The soft actuator can be
discretized into n elements. Each point is parameterized by the arc
length x, defined in the undeformed configuration.

The global position r(x) can then be expressed by qi as

r(x) = S(x)qi, (3)

where S(x) ∈ R2×8is the shape function. The explicit expres-
sion of S(x) is expressed as

S(x) =
[
s1I2 s2I2 s3I2 s4I2

]
s1 = 1− 3ξ 2 + 2ξ 3

s2 = L
(
ξ − 2ξ 2 + ξ 3

)
s3 = 3ξ 2 − 2ξ 3

s4 = L
(
−ξ 2 + ξ 3

) ,
(4)

where ξ = x/L and I2 is a 2× 2 identity matrix. By com-
bining generalized coordinates of all nodes, the configuration
coordinate of the soft actuator q ∈ R4(n+1)is given as

q=
[
qT1 · · · qTn+1

]T
=
[
q1 q2 · · · q4n+3 q4n+4

]T
.

(5)

2.3. Dynamics

Based on the principle of virtual work, the dynamic equation
without the dissipate term of the i-th element is as follows

Miq̈i+Qi
e =Qi

f, (6)

where the dot symbol denotes a derivative with respect to time
[33]. Mi, Qi

e, and Qi
f represents the mass matrix, the gen-

eralized elastic forces, and the generalized external forces,
respectively.

The mass matrixMi is firstly derived by the kinetic energy.
We assume that the material is uniformly distributed along the

3
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centerline and that the cross section is rigid. The kinetic energy
of the ith element Ti takes the form

Ti =
1
2

ˆ L

0
ρAṙTṙdx=

1
2

(
q̇i
)T(

ρA
ˆ L

0
S(x)TS(x)dx

)
q̇i

=
1
2

(
q̇i
)T

Miq̇i, (7)

where ρ and A are the density and the area of the cross section,
respectively. Therefore, the constant mass matrix Mi can be
written as

Mi = ρA
ˆ L

0
S(x)TS(x)dx. (8)

The generalized elastic forces Qi
e can be calculated from

the elastic potential energy. As shown in figure 1, the applied
soft pneumatic actuator is composed of silicone rubber, fiber,
and an inextensible layer. If the soft pneumatic actuator is
treated as a multi-material structure, the elastic potential ener-
gies of each material should be calculated separately and then
summed up to obtain the total elastic potential energy [34].
This method can largely increase the computation burden.
To simplify the model and increase computation efficiency,
the soft pneumatic actuator is modeled as a homogeneous
incompressible material. For this homogeneous material, the
equivalent mechanical parameters (i.e. bending stiffness and
the damping coefficient) are used to ensure the model accur-
acy. These equivalent mechanical parameters are typically
calibrated by experiments, which will be introduced in the
next section. The elastic potential energy is solely attributed
to the bending deformation. Under the assumption of con-
stant bending stiffness EI, the elastic potential energy can be
expressed as

Ub =
1
2

ˆ L

0
EIκ(x)2dx, (9)

where κ(x) is the curvature. The length of the applied soft
actuator is considered constant because of the presence of the
inextensible layer. Consequently, the curvature κ(x) can be
approximated by

κ(x) = ∥rxx∥ , (10)

where ()xx denotes the second-order derivative with respect to
x [35]. To satisfy the inextensible condition during calculation,
we use the penalty function donated as

Up =
1
2

ˆ L

0
kε(x)2dx, (11)

where k is the penalty constant, and ε defined in (12) is the
Green strain tensor

ε(x) =
1
2

(
rTxrx− 1

)
. (12)

By adding (9) and (11) together, the total elastic energy U is
calculated by

U= Ub+Up =
1
2

ˆ L

0
EIκ(x)2dx+

1
2

ˆ L

0
kε(x)2dx. (13)

Utilizing the principle of virtual work, generalized elastic
forces Qi

e are determined as

Qi
e =

(
∂U
∂qi

)T

=

ˆ L

0

(
EISxx(x)TSxx (x)+ kεSx(x)TSx (x)

)
dxqi.

(14)

Generalized external forces Qi
f are caused by the payload,

gravity, and the actuation force. For the payload m applied at
xp, the generalized payload forces Q

i
m are given by

Qi
m =

(
∂r(xp)
∂qi

)T

mg= S(xp)
Tmg, (15)

where g is the gravitational acceleration. Similarly, the gener-
alized gravity forces Qi

g are given by

Qi
g = ρA

ˆ L

0

(
∂r(x)
∂qi

)T

gdx= ρA
ˆ L

0
S(x)Tgdx. (16)

When the cross section is assumed to be rigid, the deforma-
tion effect of actuated pressure P can be simplified as a pair of
torque (−M=−πR2

2Pt at x= 0 and M= πR2
2Pt at x= l) act-

ing at the two nodes [28, 36]. The generalized actuation forces
Qi
a is given by

Qi
a =−M

(
n1 ×

∂n1
∂qi

)T

+M

(
n2 ×

∂n2
∂qi

)T


n1 = 1√

(qi3)
2
+(qi4)

2

[
qi3 qi4

]T
n2 = 1√

(qi7)
2
+(qi7)

2

[
qi7 qi8

]T , (17)

where n1 and n2 are the unit axial vectors at two nodes.
Considering the inextensible condition (||rx(x)||= 1), the
equation (17) is simplified as

Qi
a =

[
02 Mqi4 −Mqi3 02 −Mqi8 Mqi7

]T
, (18)

where 02 denotes a two-dimensional row vector. By
adding (15), (16), and (18) together, the generalized external
forces Qi

f are given by

Qi
f =Qi

m+Qi
g+Qi

a. (19)

The generalized coordinate of the i-th element qi and the
configuration coordinate of the soft actuator q satisfy

qi = Biq, (20)

4
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where Bi ∈ R8×4(n+1) is the Boolean matrix [37]. Using the
Boolean matrix, the dynamic model of the soft actuator can be
derived as

Mq̈+Qe =Qf, (21)

where

M=
n∑

i=1

BiTMiBi

Qe =
n∑

i=1

BiTQi
e

Qf =
n∑

i=1

BiTQi
f

. (22)

Moreover, we further complete (21) by introducing the
Rayleigh damping term cMq̇ [38] and constrain equations
C(q) = 0:

f=
[
f1
f2

]
=

[
Mq̈+ cMq̇+Qe−Qf+CT

qλ
C

]
= 0, (23)

where c is the damping coefficient,Cq is the Jacobianmatrix of
constrain equations with respect to the configutaion coordin-
ate, and λ is the Lagrange multiplier. The derived dynamic
model is in the Euler-Lagrangian form.

3. Numerical calculation

Since the derived dynamic model (23) is a highly stiff sys-
tem, explicit integration schemes can lead to heavy compu-
tation burden due to the Courant–Friedrichs–Lewy condition
[39]. Therefore, the Newmark method, one kind of impli-
cit integration schemes, is applied to perform the dynamic
simulation [40].

In the Newmark method, the time-integration schemes of
the position vector qn+1 and the velocity vector q̇n+1 at time
tn+1 are as follows{

qn+1 = qn+∆hq̇n+ 0.5∆h2
[
(1− 2β) q̈n+ 2βq̈n+1

]
q̇n+1 = q̇n+∆h

[
(1− γ) q̈n+ γq̈n+1

] ,

(24)

where ∆h= tn+1 − tn is the integration time-step, and β and
γ are defined parameters. To obtain the second order conver-
gence property, β and γ in this work are set to 0.25 and 0.5,
respectively [40].

In each integration step, the acceleration vector q̈n+1 and
the Lagrange multiplier λn+1 in (23) are calculated by the
Newton–Raphson algorithm [41]with the following iterations:

[
∆q̈n+1
∆λn+1

](k+1)

=

[
∆q̈n+1
∆λn+1

](k)
−

[
∂f1

∂q̈n+1

∂f1
∂λn+1

∂f2
∂q̈n+1

∂f2
∂λn+1

]−1[
f1
f2

](k)
.

(25)

Each submatirx in the Jacobian matrix can be calculated as:

∂f1
∂q̈n+1

=M+ γ∆hcM+β∆h2
(

∂Qe

∂qn+1
− ∂Qa

∂qn+1

)
,

∂f1
∂λn+1

= CT
q ,

∂f2
∂q̈n+1

= β∆h2Cq,
∂f2

∂λn+1
= 0.

(26)

Using equations (22), ∂Qe/∂q and ∂Qa/∂q are calculated as

∂Qe

∂q
=
∑
i

BiT ∂Q
i
e

∂qi
,
∂Qa

∂q
=
∑
i

BiT ∂Q
i
a

∂qi
, (27)

where

∂Qi
e

∂qi
=

ˆ L

0

(
EISTxxSxx+ kεSTxSx+ kSTxSxq

iqiTSTxSx
)
dx, (28)

∂Qi
a

∂qi
n+1

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 M 0 0 0 0
0 0 −M 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −M
0 0 0 0 0 0 M 0


. (29)

Since the Jacobian matrix is time-consuming to calculate, it
is only updated in the beginning of each Newton iteration.
In addition, integrals are numerically calculated by Gauss-
Legendre quadrature to improve the computational efficiency.

4. Experiments

In this section, the experimental platform is firstly described.
Then, parameter identification experiments are introduced.
Finally, validation experiments and corresponding results are
presented and analyzed. It should be noted that the actuation
frequencies of all experiments are restricted within 1.6 Hz
to avoid exciting the vibration. The threshold frequency (i.e.
1.6 Hz) is determined by the frequency sweep test.

4.1. Experimental platform

The experimental platform is demonstrated in figure 3.
Specifically, the control signal is sent from a control mod-
ule (dSPACEDS1103 board, dSPACE, Paderborn, Germany)
to the pneumatic system. After receiving the control signal, the
pneumatic system outputs compressed gas, and the pressure is
measured by the embedded pressure sensor (Type511, HUBA,
Switzerland). The tip displacements of the soft actuator are
simultaneously measured by a motion capture system (Prime
13, OptiTrack, USA) and saved by the computer in real-time.

5
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Figure 3. The experimental platform.

4.2. Parameter identification experiments

In the developed dynamic model, the bending stiffness EI
and the damping coefficient c need to be identified. Besides,
to achieve accurate and efficient dynamic simulation, numer-
ical calculation parameters (i.e. the number of elements n
and the integration time-step∆h) also need to be determined.
Therefore, we conduct the parameter identification experi-
ments for these parameters.

To identify the bending stiffness EI, the soft actuator is
horizontally clamped without actuation (shown figure 4(a)).
A 30 g weight is attached to the tip of the soft actuator. In
this circumstance, the bending deformation of the soft actu-
ator is only caused by gravity and the attached weight. The
vertical displacement of the tip ∆y = 34.37 mm is measured
by the OptiTrack system. Given a specific EI, the vertical dis-
placement of the tip, denoted by |q4n+2|, can also calculated by
solving (23) when neglecting the generalized inertial forces,
the generalized damping forces, and the generalized actuation
forces. Consequently, the bending stiffnessEI can be identified
by solving the following constrained optimization problem:

min
EI

(∆y− |q4n+2|)2

subject to

[
Qe−Qf+CT

qλ
C

]
= 0.

(30)

To ensure the accuracy of the calculation, the number of the
elements n is set to 15, and MATLAB implements the calcu-
lation. Figure 4(b) illustrates the relation between the bending
stiffness and the simulated vertical displacement. Through this
analysis, the bending stiffnessEI is identified as 0.0186N ·m2.

To identify the damping coefficient c, the soft actuator is
vertically clamped without tip weight. A 10 s sinusoidal pres-
sure with the frequency of 1.6 Hz is applied to actuate the soft
actuator. The tip positions of the soft actuator are recorded by
the OptiTrack system. The control frequency of the dSPACE
board is 50 Hz, and the sampling frequency of the OptiTrack
system is 100 Hz. Given a specific actuated pressure, the tip

Figure 4. Experimental setup and results of the bending stiffness
identification. (a) Experimental setup. A 30 g weight is attached to
the tip of the soft actuator, and the vertical displacement of the tip
∆y is measured. (b) The relation between the bending stiffness and
the simulated vertical displacement with a 30 g tip load.

response can be calculated by the presented dynamic simu-
lation. Therefore, the damping coefficient can be identified
by minimizing the root mean square error (RMSE) between
recorded tip positions and simulated tip positions, which is
defined as

e=

√√√√ 1
N

N∑
i=1

(pir−pis)
2
, (31)

where N is the total number of recorded data, and pir and pis
are i-th recorded and i-th simulated positions, respectively.
To ensure the accurate calculation, the number of the ele-
ments n and the integration time-step ∆h are set to 15 and
0.1 ms, respectively. Figure 5 illustrates the relation between
the damping coefficient and the RMSE. It is clear that the
damping coefficient c is identified as 2.4 N sm−1.

The recorded dynamic response under actuation frequency
of 1.6 Hz is also used to determine the simulation parameters.
Different numbers of elements (ranging from 1 to 7) and dif-
ferent integration time steps (∆h1 = 0.1 ms, ∆h2 = 0.5 ms,
∆h3 = 1 ms) are systematically tested. Figure 6 presents the

6
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Figure 5. The relation between the damping ratio and the average
simulation error when the 1.6 Hz input pressure is applied.

Figure 6. Average simulation error (solid line) and computation
time (dashed line) against the number of the discrete elements and
the integration time-step.

experimental results, comparing simulated RMSEs and com-
putation time. The simulated RMSE demonstrates a decreas-
ing trend as the number of elements n increases. However, this
improvement tends to plateau when the number of elements
exceeds 4. Conversely, the computation time exhibits a steady
increase with an increasing number of elements. Notably, dif-
ferent integration time steps show few influence on the sim-
ulated RMSEs. Therefore, to guarantee accurate and efficient
dynamic simulation, the number of elements n and the integ-
ration time-step ∆h are identified as 4 and 1 ms, respectively.
With this set of parameters, the calculation required 6.76 s for
a 10 s simulation, which is already real-time.

4.3. Validation experiments

4.3.1. Simulation under sinusoidal pressure. The developed
dynamic model is firstly validated using sinusoidal pressure.
To demonstrate its ability in dynamic simulation, the ANCF-
based static model [28] is utilized as a benchmark. The soft
actuator is vertically clampedwithout tip weight. One chamber

is actuated by sinusoidal pressure with frequencies of 0.4 Hz,
0.7 Hz, and 1.0 Hz, while the actuation pressure of the other
chambermaintains 0 kPa. Displacements of the actuator tip are
recorded by the OptiTrack system during actuation. Using the
dynamic simulation RMSE ed and the static simulation RMSE
es, the error reduction rate re is defined as

re =

(
1− ed

es

)
× 100%. (32)

The simulation performance of both the dynamic model
and the quasi-static model is presented in figure 7. The sim-
ulation errors of the static model are 4.4633 mm (0.4 Hz),
5.0139 mm (0.7 Hz), and 7.2328 mm (1.0 Hz), respectively.
In contrast, the simulation errors of the dynamic model are
2.7712 mm (0.4 Hz), 2.6919 mm (0.7 Hz), and 3.2290 mm
(1.0 Hz), indicating error reductions of 37.91%, 46.31%, and
55.36%, respectively. The experimental results emphasize the
limitation of the static model in predicting output phase lag,
which is induced by the dynamic property of the soft actuator.
Therefore, the simulation performance of the static model dra-
matically degrades as the frequency increases. On the contrary,
the dynamic model predicts the output phase lag as illustrated
in figure 7, thereby achievingmore accurate simulation results.

4.3.2. Simulation under complex pressure and tip loads.
The dynamic model is further validated under the condition
that the soft actuator is subject to complex pressure and vary-
ing tip loads. Firstly, the soft actuator is vertically clamped
without tip weight. Five reflectivemakers are uniformly placed
along the centerline of the soft actuator to capture whole con-
figurations. One chamber is actuated by a sweep frequency
pressure (ranging from 0.01 Hz to 1.6 Hz in 8 seconds), while
the other remains uninflated. Figure 8(a) illustrates the real tip
response and the simulated one. The RMSE of the dynamic
simulation is 3.84 mm, less than 2.5% of the soft actuator’s
length. Moreover, the presented dynamic model effectively
captures the output phase lag within the applied frequency
range. The recorded and simulated configurations at differ-
ent times are showcased in figure 8(b). The simulated con-
figurations closely align with the recorded ones, verifying the
presented dynamic model.

After the sweep frequency pressure experiment, various
known weights, ranging from 0 g to 50 g, are applied to the
tip. Both chambers of the soft actuator are actuated by com-
plex control pressure (shown in figure 8(c)). Each control pres-
sure is the superposition of sinusoidal pressures with differ-
ent frequencies (below 1.6 Hz) and phases. As presented by
table 1, the average simulation RMSE of the dynamic model
is 2.69 mm, equivalent to 1.54% of the soft actuator’s length.
Notably, there is no significant error increase when different
tip loads are applied. The simulated tip response and experi-
mental results with a 20 g applied tip load are exemplified in
figure 8(d). The simulated data are roughly consistent with the
experimental results, validating the accuracy of the dynamic
model.

Finally, the soft actuator is horizontally fixed, and the same
actuation pressure and tip loads (from 0 g to 50 g) are imposed.
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Figure 7. Comparison of the tip response between the dynamic simulation (red line) and the static simulation (blue line) under the input
pressure frequency of (a) 0.4 Hz, (b) 0.7 Hz, and (c) 1.0 Hz.
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Figure 8. Experimental results of the model validation under complex actuation pressure. Experimental results of vertically fixed actuator
under the sweep frequency pressure: (a) The predicted tip response and the collected displacement; (b) Predicted soft actuator shapes and
the recorded results at different times (coordinate units: mm). (c) The complex pressure signal applied to chamber 1 and chamber 2. (d) The
predicted tip response and the collected displacement when the soft actuator is vertically fixed with a 20 g tip load. Experimental results of
horizontally fixed actuator under the complex actuation pressure and a 50 g tip load: (e) The predicted tip response and the collected
displacement; (f) Predicted soft actuator shapes and the recorded results at different times (coordinate units: mm).

Table 1. Simulation RMSEs of the vertically clamped soft actuator.

Tip Load(g) RMSE(mm)

0 2.9563
10 2.7775
20 2.7462
30 2.5361
40 2.4540
50 2.6545
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Table 2. Simulation RMSEs of the horizontally clamped soft
actuator.

Tip Load(g) RMSE(mm)

0 3.1998
10 3.2572
20 3.3420
30 3.3407
40 3.4520
50 3.1897

As illustrated in table 2, the simulation RMSEs exhibit con-
sistency across various tip loads, with a minimal error of
3.1897 mm and a maximal error of 3.4520 mm. Figure 8(e)
showcases the simulated tip response and the experimental
data when a 50 g tip load is applied to the horizontally fixed
soft actuator. The simulation results are in good accordance
with the experimental data. Additionally, figure 8(f) presents
simulated and recorded configurations at different times. Even
when the soft actuator undergoes large deformation (t= 3.2 s),
the configuration can still be accurately predicted. In sum-
mary, the diverse results collectively validate the presented
dynamic model.

4.3.3. Simulation of oscillation. In the experiment, the soft
actuator is horizontally fixed, and a 100 g load is applied
to the tip by a string. After the soft actuator reaches the
equilibrium state, the string is cut suddenly (as shown in
figure 9(a). Configurations of the soft actuator during the
oscillation process are recorded using the OptiTrack system.
Figure 9(b) illustrates the simulated transition stage of the tip
after the 100 g load is suddenly released. The simulation res-
ult coincides approximately with the experimental result at the
initial stage, in terms of the period of vibration and the over-
shoot behavior. The main manifestations of simulation error
are slight differences in peak values and vibration frequen-
cies that causes the phase shift. Possible reasons are nonlin-
ear elastic forces, unmodeled dissipative forces, and neglected
material viscosity. In summary, this experimental results show
that the dynamic model can capture the dominant dynamic
property of the soft actuator.

4.4. Diuscussion

Experiments demonstrate that the proposed dynamic model
can accurately predict the deformed configurations under dif-
ferent actuation pressures. Compared to existing research, the
proposed dynamic model incorporates both external forces
and actuation forces. Meanwhile, real-time dynamic simu-
lation is achieved by utilizing the Newmark algorithm and
simplifying the model in two key ways. The first assump-
tion is the simplified equation of the curvature due to the
existence of the inextensible layer. The second assumption is
to model the soft actuator as a homogeneous incompressible
material with nominal material properties. Therefore, the pro-
posed dynamic model is applicable to a wide range of soft

Figure 9. (a). Schematic illustration of the weight release scenario.
(b). Tip response of the weight release scenario.

pneumatic actuators with limited length change, irrespective
of their shapes, dimensions, and materials. Furthermore, the
proposed dynamic model is verified under non-contact work-
ing scenarios. When operating in environments with obstacles
and potential contact, contact constraints should be incorpor-
ated into the constraint equations C(q).

Additionally, the actuation frequencies of all validation
experiments are within 1.6 Hz. For applications involving
faster movements (such as locomotion and haptics) where soft
actuators exhibit movements as rapid as 100 Hz, modifications
to our dynamic model are necessary. Specifically, material vis-
cosity (i.e. the tan delta of the elastomer) must be considered
by changing the Rayleigh damping term into (c1M+ c2K)q̇,
where M and K are the mass and stiffness matrices and c1
and c2 are constants of proportionality. Moreover, faster move-
ments require a smaller integration time-step and a larger ele-
ment number. System properties like flow rate and actuator
free volume should also be taken into account. In such scen-
arios, the actuation pressure becomes a function of time, flow
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rate, and actuator free volume. This function could be obtained
by the system identification method or the derivation of the
ideal gas equation.

5. Conclusions

In this paper, we present an ANCF-based dynamic model for
soft actuators and validate this model by experiments. The
ANCF approach is employed to represent variable curvature
configurations of soft actuators. Based on this parameteriza-
tionmethod, generalized forces are calculated and the dynamic
model is derived by the principle of virtual work. With identi-
fied parameters, the Newmark method is utilized to solve the
developed dynamic model and achieve real-time simulation.
The prediction accuracy pf the dynamic model is experiment-
ally validated. Under actuation pressure with frequencies of
0.4 Hz, 0.7 Hz, and 1.0 Hz, the dynamic model achieves sub-
stantial simulation error reductions of 37.91%, 46.31%, and
55.36% compared to the static ANCF-based model. The sim-
ulation error at the tip remains below 2.5% of the soft actu-
ator’s length when the sweep frequency actuation pressure is
applied. With varying tip loads complex actuation pressure,
the maximum simulation error remains below 2% of the soft
actuator’s length.We believe this research can pave theway for
developing dynamic controllers for soft actuators, enhancing
their wider applications in various fields.

Future work of the dynamic model attempts to improve
simulation accuracy by incorporating additional effects such
as nonlinear elastic forces, material viscosity, and fluid
dynamics. We also plan to further establish dynamic mod-
els for multiple-segment soft continuum robots. Moreover, the
proposed model will also be investigated to predict the risk
of bursting and enhance the selection of soft actuators with a
reduced probability of bursting.
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