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A B S T R A C T

Deep learning-based classification algorithms are promising in gesture recognition with soft e-skin patches.
However, the reported algorithms usually require large amount of training data, resulting in the time-
consuming data collection process. In this paper, we present a deep transfer learning-based adaptive strategy
for accurate gesture recognition of a soft e-skin patch with reduced training data and time. To this end, we first
train a base neural network as the general feature extraction network. Next, we transfer the front layers of the
pre-trained base network to target networks of new gesture recognition tasks. Further, we apply the fine-tune
technique to refine the copied parameters. Finally, with our custom-built soft e-skin patch, we experimentally
verify the developed strategy on two typical transfer cases, termed as the user transfer case (Case I) and the
gesture transfer case (Case II). The experimental results show that, to ensure the stable accuracy of 95 %, the
training data with and without the adaptive strategy are 1,312 vs 10,912 for Case I, and 8,192 vs 12,032 for
Case II, respectively. In this sense, the training time of target networks can be reduced by 62.96 % for Case
I and 34.20 % for Case II, respectively. This work shows the potential to promote the widespread application
of e-skins in human computer interaction.
1. Introduction

Hand gestures are of great significance to human-to-human com-
munication [1] and human computer interaction [2]. For example,
the communication gap between the hearing impaired and healthy
people can be bridged by sign language [3], and the disabled can
accurately control robotic wheelchairs assisted by a gesture recognition
system [4]. E-skin with embedded soft strain sensors is a promising
device for gesture recognition due to its intrinsic stretchability and
biocompatibility [5]. To efficiently achieve fast and robust hand gesture
recognition, data-driven classification algorithms are crucial [6].

In the literature, many data-driven classification algorithms, such
as K-Nearest Neighbor (KNN), Decision Tree (DT), and Linear Discrim-
inant Analysis (LDA), have been widely used [7–9]. However, when
dealing with multidimensional data or large datasets, these algorithms
generally suffer from relatively low classification accuracy and high
computational complexity [10]. On the other hand, features of the
input data need to be manually selected, which dramatically increases
users’ burden [11].

Due to the remarkable expressive power and the ability to au-
tomatically extract latent features, the deep learning algorithms are
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investigated and applied for gesture recognition [12]. Among reported
deep learning algorithms, artificial neural networks (ANNs) are mostly
used in static gesture recognition due to their relatively simple struc-
tures [13]. However, ANNs generally neglect the spatial and temporal
features in the input data. This limitation impedes the wide applications
for the e-skins consisting of sensor arrays or dynamic gesture recog-
nition tasks. Alternatively, convolutional neural networks (CNNs) are
employed to identity the spatial features, since filters in each layer are
able to extract local information revealing strain patterns of the skin
or bending angles of fingers [14]. For dynamic gesture recognition,
recurrent neural networks (RNNs) are introduced to analyze sequential
signals. For example, by dividing the collected data into several se-
quences, Zhang et al. [15] presented a long short-term memory (LSTM)
neural network to extract the temporal features, which improved the
classification accuracy.

Despite the promising achievements on gesture recognition with
deep learning approaches, the practical application in gesture recog-
nition with an e-skin system is still limited. This gap may be mainly
caused by the huge training data demand of neural networks to dis-
tinguish diverse sensor signal distributions among different tasks. The
vailable online 27 September 2023
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Fig. 1. Overview of realizing the rapid adaption of an e-skin patch to a new gesture recognition task with the proposed adaptive strategy for the gesture transfer case.
large amount of high-quality data with manual annotation are time-
consuming to collect, which is unrealistic for daily use. Alternatively,
deep transfer learning is an effective approach to release the require-
ment of heavy training data. By leveraging learned knowledge from
source tasks (i.e., original tasks) to target tasks (i.e., new tasks), deep
transfer learning can ensure high accuracy of target neural networks
with relatively small training datasets, which have been well demon-
strated in the field of gesture recognition based on Surface Electromyo-
graphy (sEMG) [16], computer-aided diagnosis [17], and simulations of
chemical, biological systems [18], image colorization [19], machinery
fault diagnosis [20], and face mask detection [21].

Recently, some interesting works have been reported to apply deep
transfer learning to soft sensor-based devices, but they mainly focus on
the utilization of a single sensor [22]. Although Thuruthel et al. [23]
introduced deep transfer learning algorithms into a multi-sensor sys-
tem, they achieved the reduced training time of networks at a cost of
decreased accuracy. Moreover, the effectiveness of transfer learning is
researched when the device is reattached by the same user or reused by
different users [24]. Besides, the used approaches are usually limited to
the same gesture set with a fixed transfer method. Currently, it is still
elusive on how to adaptively adjust the transfer strategy for different
gesture recognition tasks in order to release the enormous data burden.

In this paper, we present an adaptive deep transfer learning strategy
for gesture recognition with a soft e-skin patch with five embedded
strain sensors (as shown in Fig. 1), which achieves high-accuracy clas-
sifications with reduced training data and time. To this end, we firstly
train a base neural network as the general feature extraction network.
Next, we transfer the front layers of the pre-trained base network to
target networks of new gesture recognition tasks. Further, we apply
the fine-tune technique to further refine the copied parameters. Finally,
with our custom-built soft e-skin patch, we experimentally verify the
developed algorithms on two typical transfer cases, termed as the
user transfer case (Case I) and the gesture transfer case (Case II). The
experimental results show that, to ensure the stable accuracy of 95%,
the training data with and without the adaptive strategy are 1312 vs.
10,912 for Case I, and 8192 vs. 12,032 for Case II, respectively. In
this sense, the training time of target networks can be reduced by
62.96% for Case I and 34.20% for Case II, respectively. These results
demonstrate that the proposed adaptive strategy can decrease the data
demand and training time of target networks, which is particularly
marked for the user transfer case. Therefore, it is promising to enhance
the application of the soft e-skin patch in various fields. Overall, the
2

main novelties and contributions of this work can be summarized as
follows.

(1) A deep transfer learning-based adaptive strategy is proposed
for a soft e-skin patch. It can enhance the rapid adjustment of the
soft e-skin patch to diverse gesture recognition tasks by circumventing
lengthy data acquisitions and training time.

(2) A parameter determination scheme of the number of transferred
layers is developed based on the similarity between the source task
and the target task. For the user transfer case, all layers of the source
network are transferred; for the gesture transfer case, only the first
layer of the source networks is transferred, which rarely investigated
by previous researches.

(3) Experimental results are presented and compared to validate the
effectiveness and feasibility of the proposed strategy.

The reminder of this paper is organized as follows. Section 2 pro-
poses the basic gesture recognition algorithm. Section 3 introduces the
detailed adaptive strategy. Section 4 analyzes experimental results and
verifies the development, and Section 5 concludes this paper.

2. Basic gesture recognition strategy

In this section, we firstly introduce the basic gesture recognition
strategy based on the deep learning classification algorithm, including
its structure and its training scheme. Then, we explicitly explain how
to determine the optimal strategy for a single gesture recognition task.

2.1. Network structure and training scheme

We adopt the Multilayer Feedforward Neural Networks (MLFNN)
due to its remarkable expressive power and simple structure [25]. The
developed network in our work contains an input layer, hidden layers,
and an output layer. Each neuron in a layer is connected with all
neurons in adjacent layers. Rectified Linear Units (ReLU) are selected
as the activation functions of hidden layers to accelerate computation
and avoid the vanishing gradient problem [26], and the output layer
utilizes Sigmoid activation function.

To tackle the typical training problem, a customized training scheme
for the applied MLFNNs is utilized. Firstly, the adaptive moment
estimation (Adam) optimizer is adopted to update the parameters of
networks because of its ability to deal with sparse gradients [27].
Meanwhile, mini-batch training strategy is employed to address the
converge problem [28], and the batch size in this research is set to 32.
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Besides, early stopping technique is employed to avoid overfitting [29].
It means that the training process would be terminated ahead when
the classification performance of the MLFNN stagnates for 10 training
iterations. The gesture dataset collected from one task is split into 3
datasets: a training dataset to update parameters, a validation dataset
to prevent overfitting, and a test dataset to evaluate the performance.
The proportions of 3 datasets are 70%, 15% and 15%, respectively.
The standard cross-entropy loss function is employed as a performance
metric during training process:

𝐿(𝜋; 𝑦) = −
𝐾
∑

𝑘=1
𝑦𝑘 log𝜋𝑘 (1)

where 𝑦𝑘 is the correct labels, and 𝜋𝑘 is the predicted probability.

2.2. Determination of the optimal basic strategy

A basic gesture recognition strategy which attains outstanding clas-
sification performance can fundamentally promote the effectiveness of
the proposed adaptive strategy. The determination of the basic gesture
recognition strategy can be achieved by two steps. In the first step, the
number of hidden layers and neurons of each layer should be properly
set. In the second step, a training setup is required.

For step 1, the most important factor is the number of hidden layers,
because excess hidden layers can cause overfitting problem and long
training time. MLFNNs containing 1 hidden layer or 2 hidden layers
are powerful for most classification problems [25], so MLFNNs with 1
or 2 hidden layers are compared in this step. The numbers of neurons
contained in each layer can be determined by grid search method.
For step 2, the most important factor is the data preprocess method,
since improper preprocess methods tend to result in the difficulty of
convergence [30]. In this work, we compare two techniques for data
preprocess for comparisons: (i), extracting the relative change rates of
sensor readings, which is widely used in recalibration of sensors [31–
33] (ii), normalizing sensor readings, which is commonly employed in
the field of deep learning. Moreover, unprocessed data are adopted as
a benchmark. Detailed experiment results are presented in Section 4.2.

3. Adaptive strategy for rapid adjustment to new gesture recogni-
tion tasks

In this section, we present an adaptive deep transfer learning strat-
egy for a soft e-skin patch to facilitate its rapid adaption in new gesture
recognition tasks. We firstly give an overview of the deep transfer learn-
ing. Then, we introduce 2 typical transfer cases and their corresponding
datasets. Finally, the detailed adaptive strategy is developed based on
the basic gesture recognition strategy mentioned in Section 2.

3.1. Overview of deep transfer learning

Deep transfer learning is a significant tool to alleviate the enormous
data burden. The key idea of deep transfer learning is to reapply
knowledge learned from one task to another similar task [11]. In
general, the task that is used to acquire prior knowledge is named the
source task, and the task that receives transferred knowledge is named
the target task. Datasets of source tasks and target tasks are called
source datasets and target datasets, respectively.

Deep transfer learning can be explicitly defined using mathematic
notations. First of all, a source domain can be represented by 𝑆 =
{𝑋,𝑃 (𝑋)}. The source dataset 𝑋 = {𝑥1,… , 𝑥𝑛} consists of numerous
instances, and the source probability distribution 𝑃 (𝑋) is approximately
represented by a neural network. Then, given the target dataset 𝑌 =
{𝑦1,… , 𝑦𝑚}, deep transfer learning aims to acquire the target probabil-
ity distribution 𝑃 (𝑌 ). Specifically, the target probability distribution is
a conditional probability distribution 𝑃 (𝑌 |𝑆), since it leverages prior
knowledge learned in the source domain. In addition, the size of the
target dataset tends to be much smaller than the size the source dataset,
i.e., 𝑚 ≪ 𝑛.
3

Fig. 2. Gesture sets: (a) American Sign Language Digits (ASLD) ; (b) Single Finger
Movements (SFM) [9].

3.2. Two typical transfer cases

In this work, 2 typical transfer cases with a soft e-skin patch are
investigated: 1) the user transfer case (Case I): the soft e-skin patch is
worn by another user to classify the same gesture sets; 2) the gesture
transfer case (Case II): the e-skin patch is worn by the same user to
classify another gesture set.

For Case I, we employ the widely used American Sign Language
Digits (ASLD) [6,34] as the gesture sets of the source task and the target
task as shown in Fig. 2(a). The source dataset and the target dataset
are collected from 2 users. For Case II, the Single Finger Movement
(SFM) set (as shown in Fig. 2(b)) is selected as the source gesture
set, and ASLD set is used as the target gesture set. The SFM set is
the simplest hand gestures, and may be regarded as basic components
of complicated gestures of the ASLD set. Therefore, neural networks
for the SFM recognition tasks may imply general knowledge about
extracting latent representations, which can be reapplied to the ASLD
recognition tasks. The source dataset and the target dataset of Case II
are SFM gesture dataset and ASLD dataset collected from the same user.

3.3. Adaptive strategy

In the proposed adaptive strategy, the network-based deep transfer
learning is applied due to its efficient implementation and interpretabil-
ity [11]. In this sense, a source MLFNN is firstly trained. As shown
in Fig. 3(a), a well-trained source MLFNN can be divided into two
parts: general feature extractors and specific feature extractors. The
front layers of the source MLFNN tend to extract general latent features
implied in both source datasets and target datasets, and succeeding
layers are prone to extract specific features which differ remarkably
among diverse tasks [11]. By transferring front layers, parameters of
general feature extractors are reused as the initialization of correspond-
ing layers in the target network as shown in Fig. 3(b). Leveraging
prior knowledge acquired from the source task can reduce the data
to train the general feature extractors of the target MLFNN. Therefore,
the data-efficiency of target networks is increased, and the enormous
data burden is released without the loss of classification accuracy.
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Fig. 3. (a) MLFNNs for classification can be typically divided into two part: general
eature extractors and specific feature extractors. (b) The structure of adaptive network-
ased deep transfer learning strategy. A source MLFNN is firstly pre-trained. Then,
eneral feature extractors of the source MLFNN are transferred, which can promote
he data efficiency of the target MLFNN. Finally, the target MLFNN is trained with the
arget dataset.

arameters of specific feature extractors of the target MLFNN are
andomly initialized, because misuse of parameters in these layers can
ause serious optimization difficulties [35]. Finally, the target MLFNN
s trained with the target dataset.

. Experimental results

In this section, we firstly illustrate the setup of the experimental
latform and data collection process. We then determine the optimal
asic gesture recognition strategy. Finally, we show the experimental
esults of the 2 transfer cases with the proposed adaptive strategy.

.1. Experimental platform and data collection

Fig. 4 shows the experimental platform with our customized soft
-skin patch. The soft e-skin patch [9] contains 5 W-shaped soft strain
ensors. When the hand moves to make a gesture, the stretching skin
n the back of the hand shall elongate the strain sensors of the soft e-
kin patch and thus increase their resistances. Soft sensors are set along
st, 2nd, 3rd, 4th, and 5th metacarpal. Their locations are optimized
y a sequence of feature reduction methods (refer to [9] for details).
he middle sensor is orthogonal to the metacarpal, and others are
long corresponding metacarpals. Each soft sensor is composed of a
andwich structure: two polyethylene terephthalate (PET) substrates
4

Table 1
Detailed setups of networks.

Network Number of hidden layers Data preprocess method

Network 1 2 Normalized
Network 2 2 Relative change
Network 3 2 Unprocessed
Network 4 1 Normalized
Network 5 1 Relative change
Network 6 1 Unprocessed

Table 2
Experiment results of different strategies for Case I.

Strategy Accuracy/% Training time/s

S1T 96.31 ± 1.85 275.83 ± 41.32
S2T 78.75 ± 4.59 227.92 ± 21.81
S1T+ 95.61 ± 2.18 249.51 ± 28.33
S2T+ 85.65 ± 4.72 175.87 ± 28.98
S3T+ 98.69 ± 0.21 203.39 ± 21.43

protecting the middle soft electrode layer made from carbon grease
(847, MG Chemical, Canada). The sensors feature low hysteresis and
high stability across days.

A microcontroller unit (MCU, STM32L475, STMicroelectronics)
with embedded analog-to-digital converter (ADC) records the changing
resistances of strain sensors at a sampling frequency of 100 Hz. The data
are gathered and transmitted online from the MCU to the computer.
Once the data are obtained, a digital low-pass filter in MATLAB (2019a,
Mathworks) is used to filter the raw data. Finally, a Python deep
learning framework (PyTorch 1.6.0, with Graphics Processing Unit
NVIDIA GTX 2070s) is applied to classify gestures using the processed
data.

Twelve healthy subjects (7 males and 5 females aged 21–33 years
old) have participated in data acquisition. The soft e-skin patch was
attached to the subjects’ left hands with the help of atoxic, adhesive gel.
A screen was used to display the gestures to make. Each gesture was
required to hold for 5 s following a 5 seconds’ relaxation. Subjects could
ask for a rest at any time if necessary. A computer stored the collected
data online and processed data offline. The middle 4 s of collected data
during making gestures were retained, because the first and last 0.5 s
were treated as transition time. For simplicity, we use the notations of
SFMn and ASLDn (𝑛 = 1, 2,… , 11, 12) to represent SFM datasets and
ASLD datasets collected from the subject 𝑛.

4.2. Experiments for determining the optimal basic strategy

6 MLFNNs with different setups (as shown in Table 1) are trained
and compared to identify the optimal gesture recognition strategy.
To eliminate the contingency caused by random initialization, each
network is repeatedly trained with 20 different sets of initialized pa-
rameters. The evaluation criteria are average classification accuracy
and training time.

The results are shown in Fig. 5. The results show that preprocessed
data can dramatically promote the classification accuracies and reduce
the training time. Comparing to the two data preprocess methods,
the relative change rate of input data occasionally causes relatively
low average prediction accuracies (about 80%), which is obvious in
network 2. By contrast, networks trained on normalized input data
steadily maintain their prediction accuracies at almost 100%. Networks
with single hidden layer require more training time to ensure stable
classification accuracies (>95%) compared to networks containing 2
hidden layers. Based on above experimental results, the network with
2 hidden layers trained on normalized input data is the optimal choice

for the basic gesture recognition strategy.
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Fig. 4. Diagram of the experimental setup. When making gestures, the stretching skin can elongate the soft strain sensors and thus increase their resistance. Then, an MCU
(STM32L475) with embedded ADCs is installed between sensors and external resistors as a voltage divider to record the changing voltage signals. All data are collected and saved
online, passing through the MCU to the computer.
Fig. 5. Experimental comparison among different networks in terms of average classification accuracy (left) and training time (right). The network with 2 hidden layers trained
on normalized input data is the optimal choice for the basic gesture recognition strategy.
Table 3
Prediction accuracies for Case I trained with different amounts of training data.

Data amount 787 918 1049 1181 1312 1443

Accuracy/% 88.01 90.21 91.45 93.26 95.50 95.92

4.3. Experiments of two transfer cases

Implementation of deep transfer learning varies with different pairs
of source tasks and target tasks. Therefore, the adaptive strategy for
each transfer case should be investigated separately. There are two
main factors for the adaptive strategy. The first factor is the usage of
fine-tune technique, because the rate of source training data and target
training data determines whether to utilize fine-tune technique [35].
The second factor is the number of copied layers from pre-trained
source networks which mainly depends on similarity between source
tasks and target tasks. After determining the optimal adaptive strat-
egy for each case, its effectiveness and feasibility would be further
confirmed.

The entire experiment process is performed as follows. Firstly, sev-
eral alternative adaptive strategies are designed, tested and compared
in terms of classification accuracy and training time. In this process,
a pair of the source task and the target is utilized. It should be noted
that the target dataset is only half the size of the source dataset, because
an effective adaptive strategy should ensure high recognition accuracy
with small target datasets. For simplicity, notations SnT and SnT+
(𝑛 = 1, 2, 3) are used to represent networks trained according to different
strategies. Specifically, the parameter 𝑛 represents the number of layers
copied to target networks. The front 𝑛 hidden layers are transferred for
𝑛 = 1, 2, and 2 hidden layers and the output layer are transferred for
𝑛 = 3. The symbol + signifies the utilization of the fine-tune technique.
Secondly, networks with and without the determined adaptive strate-
gies are trained and compared to verify the effectiveness. Moreover,
the prediction accuracies of the adaptive strategy trained with different
amounts of training data are analyzed. Besides, the minimum data
demanded by target networks to ensure robust and high recognition
5

Table 4
Experiment results of different strategies for Case II.

Strategy Accuracy/% Training time/s

S1T 94.07 ± 4.74 133.01 ± 24.20
S2T 69.26 ± 10.36 321.06 ± 29.71
S1T+ 95.24 ± 3.81 69.43 ± 11.73
S2T+ 80.85 ± 8.86 52.83 ± 8.86

accuracy (>95%) are confirmed. Finally, additional pairs of source tasks
and target tasks are employed to validate the generalization of the
proposed adaptive strategies. For Case I, the pair of the source dataset
ASLD1 and the target dataset ASLD2 are employed to determine the
optimal transfer strategy. 10 pairs of the source dataset ASLD1 and
the target datasets ASLDn (𝑛 = 3, 4,… , 10, 12) are used to verify the
generalization. For Case II, the pair of the source dataset SFM1 and the
target dataset ASLD1 are employed to determine the optimal transfer
strategy. 11 pairs of the source dataset SFMn and the target datasets
ASLDn (𝑛 = 2, 3,… , 10, 12) are used to verify the generalization.

(1) Experimental Results of Case I: Table 2 demonstrates classification
accuracies and training time of target networks under different adaptive
strategies. Fine-tuned networks attain an average classification accu-
racy of 90.63% compared to 87.48% without the fine-tune technique.
Besides, S1T+ and S2T+ achieve 9.54% and 22.84% reduction in aver-
age training time compared to S1T and S2T. These results demonstrate
that the fine-tune technique can effectively promote classification accu-
racy and reduce training time. As more layers of source networks are
copied to target networks and then fine-tuned, average classification
accuracy firstly decreases from 95.61% of S1T+ to 85.65% of S2T+,
and then increase to 98.69% of S3T+. In addition, average training time
has a similar fluctuation trend. Among all fine-tuned networks attaining
95% classification accuracy, S3T+ requires the shortest training time.
Therefore, copying and fine-tuning all parameters of source networks
is the optimal adaptive strategy for Case I.

Experimental results of target networks with and without the pro-
posed adaptive strategy are shown in Fig. 6. When the same training
data are utilized, target networks with the proposed adaptive strategy
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Fig. 7. Confusion matrix of the adaptive strategy for Case I.

Table 5
Prediction accuracies for Case II trained with different amounts of training data.

Data amount 4915 5734 6553 7372 8192 9011

Accuracy/% 89.31 92.87 93.15 94.31 96.10 95.62

obviously achieve higher classification accuracy. Prediction accuracies
of the adaptive strategy trained with different amounts of training data
are summarized in Table 3. The results show that a decrease in training
data results in a reduced prediction accuracy. To achieve an acceptable
classification accuracy of 95%, the required minimal number of training
data in target networks with the adaptive strategy is 1312. For the
neural network trained without the adaptive strategy, the demanded
amount of training data is 10,912. Owing to the reduced input data,
the training time of the target network is reduced from 244.20 s to
90.44 s. Moreover, the inference time, including data acquisition, data
process, and forward calculation, of the neural network trained with the
adaptive strategy is 12.46 ms. This result shows that the trained neural
network can be used in real-time gesture recognition (about 65 Hz).
The confusion matrix of the adaptive strategy tested on the test dataset
of ASLD2 is shown in Fig. 7. The results demonstrate that the adaptive
strategy can dramatically release the heavy data demand and accelerate
the training process of networks.

With the optimal adaptive strategy, the average classification ac-
curacy of networks trained on 10 other target datasets are 95.15%.
Therefore, the result demonstrates the generalization of the proposed
adaptive strategy.

(2) Experimental Results of Case II: Table 4 lists the classification
accuracies and training time of target networks with different adaptive
strategies. With fine-tune method, S1T+ and S2T+ achieve higher
lassification accuracies of 95.24% and 80.85%, respectively, compared
o 94.07% and 69.26% of S1T and S2T. Besides, S1T+ and S2T+ both
6

emand less training time (69.43 s and 52.83 s, respectively) than
1T and S2T (133.01 s and 321.06 s, respectively). Overall, the fine-
une technique can promote the prediction accuracy and dramatically
educe training time. For two fine-tuned networks, more copied layers
f source networks can evidently decrease classification accuracies from
5.24% of S1T+ to 80.85% of S2T+. Therefore, copying and fine-tuning

the first layer of source networks is the optimal adaptive strategy for
Case II.

Experimental results of target networks with and without the pro-
posed adaptive strategy are shown in Fig. 8. When the same training
data are utilized, average classification accuracies of target networks
with the proposed adaptive strategy are slightly higher. Moreover,
average training time is nearly identical for two kinds of target net-
works given the same dataset. The prediction accuracy changes of
the adaptive strategy trained on different amounts of training data
are summarized in Table 5. The results show that a higher prediction
accuracy necessitates a larger amount of training data, which is similar
to Case I. Besides, the determined amount of training data for Case II
is 8192. For the neural network trained without the adaptive strategy,
the demanded amount of training data is 12,032. Owing to the reduced
input data, the training time of the target network is reduced from
246.64 s to 162.30 s. Besides, the inference time of the trained network
for Case II (13.05 ms) is nearly the same as Case I (12.46 ms), which
also verifies the capability of the real-time gesture recognition (about
65 Hz). The confusion matrix of the adaptive strategy tested on the
test dataset of ASLD1 is shown in Fig. 9. These results demonstrate
that the proposed adaptive strategy can ensure robust and outstanding
performance with small target datasets.

The average prediction accuracy of target networks trained on 11
additional target datasets is 95.42%. The result verifies the adaptability
of proposed adaptive strategy to different tasks.

4.4. Discussion

The experimental results demonstrate that the proposed adaptive
gesture recognition strategy realizes efficient reutilization of the trained
network for two cases. This accomplishment primarily stems from the
transfer of knowledge about various strain patterns. Specifically, when
different users present the same gesture, the strain patterns on the back
of their hands exhibit similarities due to the resemblances in their hand
structures. Furthermore, even when a single user performs different
gesture sets, similarities in strain patterns can emerge due to consistent
hand motion habits. These similarities can be inherited by transferring
trained layers, thus leading to training data reduction and training time
reduction.

Moreover, it is worth noting that the adaptive strategy employed
in Case I features more transferred layers and more remarkable time
reduction. This means that more knowledge is inherited by transferred
layers in Case I. This phenomenon may primarily arise from the in-
creased similarity in hand strain patterns when different users make the
same gesture. For example, making gesture nine of ASLD set involves
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Fig. 8. Experimental results of networks with and without the adaptive strategy (AS) for Case II in terms of average classification accuracy (left) and training time (right).
Fig. 9. Confusion matrix of the adaptive strategy for Case II.

ending thumbs and forefingers, leading to larger readings of sensors
laced near thumbs and forefingers. This pattern holds true for most
sers, and thus there are more similarities between two tasks in Case
. On the other hand, there is no such similarity between ASLD set and
FM set. Therefore, less trained layer can be transferred in Case II.

. Conclusions

In this paper, we present an efficient adaptive deep transfer learning
trategy for a soft e-skin patch. The adaptive strategy combines the
odel-based deep transfer learning algorithm and MLFNNs. With the
roposed strategy, gesture recognition systems achieve rapid adaption
o inexperienced tasks by releasing heavy training data demand. Owing
o the reduced training data, the collecting time of data and training
ime of target networks are decreased. The proposed adaptive strategy
aries based on the similarity between source tasks and target tasks. For
he user transfer case, all layers of the source network are transferred;
or the gesture transfer case, only the first hidden layer of the source
etworks is transferred. In the future work, we will further investigate
he influence of the e-skin patch reattachment with the adaptive trans-
er strategy. Overall, the proposed adaptive strategy holds potential to
nhance the application of an e-skin in human–computer interaction.
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