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and Experimental Verification
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Abstract

Dielectric elastomer actuators (DEAs) enable to create soft robots with fast response speed and high-energy
density, but the fast optimization design of DEAs still remains elusive because of their continuous electrome-
chanical deformation and high-dimensional design space. Existing approaches usually involve repeating and
vast finite element calculation during the optimization process, leading to low efficiency and time consuming.
The advance of deep learning has shown the potential to accelerate the optimization process, but the high-
dimensional design space leads to challenge on the accuracy and generality of the deep learning model. In
this work, we propose a deep learning-based automatic design framework for DEAs, capable of rapidly gener-
ating high-dimensional distributed electrode patterns based on different design objects. This framework is
developed as follows: (1) a dataset construction strategy combining with a finite element model is developed
to optimize the data distribution within the high-dimensional design space; (2) a neural network-embedded
physical information is designed and trained to achieve accurate prediction of the continuous deformation
within 0:011s; and (3) a genetic algorithm with the neural network is proposed to automatically and rapidly
optimize the electrode pattern of DEAs based on various design objects. To verify the effectiveness, a series
of case studies (including maximum displacement, specific displacement, multiplicity of solutions, multiple
degree-of-freedom actuations, and complex actuations) has been conducted. Both simulation results and
experimental data demonstrate that our design framework can automatically design the electrode pattern
within 2 min and obviously improve the performance of DEAs. This work proposes a deep learning-based
design approach with automatic and rapid property, thereby paving the way for broader applications of DEAs.
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Introduction

S oft robots, capable of safely interacting with humans and
manipulating objects in unstructured environments, rep-

resent a burgeoning technology in the field of robotics. Those
bioinspired mechanical features of soft robots mainly come
from the muscle-like materials (known as artificial muscles),
such as shape memory polymers,1–6 pneumatic and fluid
actuators,7–11 and dielectric elastomer actuators (DEAs).12–15

Due to the advantages of electric actuation, fast response
speed, high-energy density, and ease of integration, DEAs
have been widely used to develop advanced soft robots.

In general, DEAs mainly consist of a dielectric elastomer
membrane coated with compliant electrodes on both sides.
When a high voltage is applied, the Maxwell stress between
the electrodes squeezes the membrane, leading to expansion
in area and decrease in thickness. Based on this working prin-
ciple, DEAs with various configurations have been proposed
to generate different actuations, such as elongation,16–18

bending,19–22 and contracting.23,24 Furthermore, there are a
lot of mechanical achievements in the design of dielectric
elastomer-actuated soft robots, such as the flying robot,25–27

deep sea swimming robot,28,29 wall-climbing robot,30–32 soft
pocket pump,33 and wearable haptic device,34–37 becoming
an important trend in the development of soft robots. As the
application of DEAs is emerging, the automatic design of
DEAs is increasingly being desired. However, due to the non-
linear electromechanical coupling, continuous deformation,
and high-dimensional design space, the automatic design of
DEAs faces huge challenge.

Most of the previous works mainly focus on establishing
physical models38–43 to explain the experimental phenomena
(such as large deformation, mechanical instability, electric
breakdown, and viscoelasticity) of DEAs. However, it is dif-
ficult to obtain the inverse analytical models for these physi-
cal models, limiting their application in the design of DEAs.
As a result, most existing DEAs mainly adopt an intuitive or
empirical design paradigm for prescribed object, limiting
their output potential for larger actuation capability. To over-
come the above drawback, some gradient-descent optimiza-
tion approach-embedded finite element method have been
proposed to improve the performance of DEAs, such as pairs
of Bezier curve,44,45 fat Bezier curve,46 0–1 layout,47 the
level set-based topology optimization method,48 and the
Solid Isotropic Material with Penalization method.45,49 In
general, those approaches usually involve three steps: (1)
calculating the continuous deformation under series of ran-
dom electrode patterns based on finite element model
(FEM); (2) calculating the gradient of the object function;
and (3) updating the electrode patterns based on gradient-
descent topology optimization methods and repeating the
above process. By taking the advantage of gradient-descent
iteration, the electrode patterns would be updating during the
optimization process. However, vast finite element calcula-
tions of the optimization process lead to low efficiency and
time consuming for one single prescribed target. Moreover,
FEM could not achieve the convergence results as the design
parameters increase, limiting their applications for designing
DEAs with high-dimensional design space.

The advance of deep learning is capable of describing
complex nonlinear mechanical systems with high accuracy

and efficiency,50,51 showing potential application in solving
the optimization problems, such as mechanical design52,53

and chemical synthesis.54,55 Recently, some deep learning-
based design methods have been proposed in the field of soft
robotics. For example, Bertoldi et al. have proposed a deep
learning-based inverse design approach that can obtain an
optimal 2D elastomer membrane and the inflation pressure
for target 3D shape. Renaud et al. have adopted the convolu-
tional neural network and the Bezier curve-based genetic
algorithm (GA) to optimize the inner structure of pneumatic
actuators.56 Li et al. have proposed a graph neural network-
based methods to optimize the supporting frame of DEA
with a minimum energy structure.57 Different from those
finite element-based optimization approaches, deep learning-
based design method usually starts from constructing a
proper dataset and train a neural network model to predict
the continuous deformation under arbitrary design parame-
ters, achieving fast optimization design. In general, the key
of deep learning-based design methods depends on the accu-
racy and generality of neural network model trained on con-
structed dataset. Usually, the dataset consists of randomly
generated design parameters and the continuous deformation
calculated by FEM. To construct the dataset for training a
deformation prediction model, a common approach is to ran-
domly sample the design space (which is the electrode pat-
tern). However, due to the high-dimensional design space of
DEAs, randomly selecting the electrode patterns to construct
the deformation dataset exits bias, as the increase of random
parameters of the high-dimensional design space leads to the
small deformation due to the fragmental electrodes. While
the large deformation is usually demanded for the applica-
tions of DEAs. And the dataset is difficult to cover the whole
deformation space of DEAs with randomly sampling of
high-dimensional design space. As a result, the accuracy and
generality of the deep learning model may deteriorate, limit-
ing their applications for high-dimensional design spaces. To
date, existing deep learning-based methods mainly focus on
optimizing a small number of design parameters. How to
rapidly design the distributed electrodes of DEAs still
remains elusive.

In this work, we propose a deep learning-based design
framework to design the distributed electric field of DEAs
fast and automatically. To this end, we first adopt the neo-
Hookean constitutive model to describe the nonlinear elec-
tromechanical effect of dielectric elastomer material and
establish a membrane element through a user-defined mate-
rial model (UMAT) in ABQUAS. Then, a dataset evaluation
method and dataset construction strategy are developed to
optimize the electrode sampling for the high-dimensional
design space. Furthermore, a neural network is trained on the
dataset-embedded physical information to describe the rela-
tionship between distributed electric field and continuous
deformation of DEAs. Lastly, by using the fast deformation
prediction neural network as a surrogate model, a GA is
adopted to automatically optimize the distributed electric
field (Supplementary Movie S1). To validate the effective-
ness, we employ the framework to automatically optimize
the distributed electric field according to different design
objects, such as specific displacement and maximum dis-
placement of single point or multiple points. Both the calcu-
lated results (FEM and Neural Network predicted) and the
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experimental data demonstrate that: (1) the Neural Network
(NN) model trained on the constructed dataset can predict
the deformations of DEAs precisely compared with the FEM
results (RMSE � 0:065) (RMSE represents root-mean square
error), showing the generality of the constructed dataset; (2)
the NN model can realize the continuous modeling of DEAs
with high-dimensional design space and can precisely pre-
dict the continuous deformation of DEAs within 0:011s; (3)
by taking the advantage of the rapid prediction, the frame-
work can reduce the computational load and accelerate the
DEAs optimization design process by three orders (about
120s) based on various design objects (Supplementary
Movie S2); and (4) the framework can achieve the multiple
inverse designs of DEAs with high-dimensional design
space, in which multiple solutions may widely exist for the
same design object. This work would contribute to rapidly
and automatically design DEAs with high performance and
high-dimensional design spaces, accelerating the practical
applications of DEAs.

Method

Working principle of the design framework

Figure 1 shows the working principle of the automatic
design framework for DEAs based on different design
objects. In general, a planar DEA mainly consists of a pre-
stretched dielectric elastomer membrane (made of acrylic,
3M VHB 4910, thickness of 1.0 mm size of 50 mm · 50 mm,
prestretch of 3:0 · 3:0) that is supported by a stiff frame
(acrylic, thickness of 3.0 mm). Carbon grease (MG846-80G),

working as a compliant electrode, is utilized to coat on both
sides of the dielectric elastomer membrane (see Supplementary
Fig. S1 for more details about the fabrication process of the
planar DEAs). The electrode divides the dielectric elastomer
membrane into two regions: active and passive region. Under
excitation voltage, the output displacement of the end effector
relies on both the active deformation of the active region and
the passive deformation of the passive region, as shown in Fig-
ure 1a. However, due to the nonlinear electromechanical
effect, continuous deformation, and high-dimensional design
space, it is difficult to establish a design model to optimize the
electrode pattern directly. To date, automatic design of elec-
trode pattern still faces challenges. To solve this problem, our
design framework (Fig. 1b) mainly involves three steps:

1. A neo-Hookean FEM is first established to obtain the
continuous deformation under distributed electrodes. In
our work, we focus on the static responses of DEAs
instead of dynamic responses. Then, we adopt a neo-
Hookean constitutive model without considering the
viscosity of the material (see Supplementary Data S1
and Supplementary Fig. S2 for more details about the
development of the FEM). Moreover, a dataset evalua-
tion method and dataset construction strategy are
developed to optimize the electrode sampling for high-
dimensional design space, paving the way for training
a deep learning model.

2. Based on the dataset, a neural network-embedded
physical information is designed and trained, which
can accurately predict the continuous deformation
within 0:011s with RMSE � 0:065 under distributed

FIG. 1. Automatic design framework for DEAs. (a) Working principle of the planar DEAs. (b) Illustration of the
workflow of the automatic design framework. First, we employ finite element method to construct and optimize the
dataset. Then, based on the dataset, a neural network model is trained to rapidly predict the continuous deformation of
DEAs under random electrode patterns. Finally, based on the neural network model, a GA is developed to achieve auto-
matic design of DEAs according to desired performance. (c) Displacement field of DEAs with fragmental and continu-
ous electrode patterns. (d) One example of the automatic designed DEAs, whose performance is improved by 21:7%,
compared with the intuitive design. DEAs, dielectric elastomer actuators; GA, genetic algorithm.
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electrodes. Compared with the FEM, the neural net-
work can accelerate the simulation process by three
orders, achieving real-time simulation.

3. The trained neural network is working as the surrogate
model and a GA-based optimization method is adopted
to automatically design distributed electrodes of DEAs.
For proof-of-concept testing, a series of case studies
(including maximum displacement, specific displace-
ment, multiplicity of solutions, multiple degree-of-
freedom actuations, and complex actuations) have been
conducted. Both simulation results and experimental
data demonstrate that our design framework can auto-
matically design the electrode pattern within 2 min.
Supplementary Movie S1 shows one example of the
design process of the planar DEA. It can be observed
that it only takes about 120 s to obtain the desired elec-
trode pattern. Compared with existing design methods
(Supplementary Table S1), our design framework can
accelerate the design process by three orders. In addi-
tion, with the designed electrode pattern, the displace-
ment of the central point is 21:7% larger than that of
intuitive design (Fig. 1d), validating the effectiveness
of our automatic design framework.

Based on the above working principle of our design
framework, the key is to establish an accurate surrogate
model. To this end, we first need to construct a proper data-
set that satisfies the following conditions: (1) its deformation
distribution should cover the deformation space of the planar
DEA under any electrode pattern and (2) the size of the data-
set should be affordable. However, due to the high-
dimensional design space of the distributed electrodes, the
deformation space is difficult to figure out. Increasing the
size of the dataset may contribute to enlarging the deforma-
tion space of the dataset, but it leads to time-consuming cal-
culation. In this work, we propose a dataset evaluation and
augmentation approach to construct the dataset.

Dataset construction

In general, the dataset consists of a series of distributed
electrode patterns and corresponding continuous deforma-
tions. The first step is to generate distributed electrode pat-
terns. To this end, the dielectric elastomer membrane is
meshed into small squares, and we use “0” and “1” to repre-
sent without and with electrodes of each small square,
respectively. It should be noted that the performance of the
planar DEAs relies on the total area of the electrode. Without
loss of generality, we first set the total area of the electrode
pattern as half of the dielectric elastomer membrane and
expand it to changing area. In addition, the prediction accu-
racy of the complex deformation field can be improved by
reducing the size of the small square, but it will enlarge the
design space and lead to fabrication problems. Therefore,
this work adopts 1.0 mm as the size of the square, and the
dielectric elastomer membrane is meshed into 50· 50 units.
As a result, there are 22500 permutation and combination of
electrodes, and the design space is too large to be fully
enumerated. Therefore, we need a strategy to generate the
proper dataset. We would like to mention that the prediction
space of the neural network model usually relies on the
deformation space of the dataset. In the meantime, the

predicted results of the neural network model also are biased
toward high probability area in the dataset. As the random
parameters of the high-dimensional design spaces increase,
the electrode patterns tend to be fragmental. The fragmental
electrodes lead to the small deformation while the large
deformation is usually demanded for the applications of
DEAs. Therefore, the dataset is difficult to randomly sample
the whole deformation space with uniform sampling of the
design space. To maximize the deformation space and
remove the data bias of the dataset, we first propose a data
evaluation method.

Specifically, we first define the range of the maximum dis-
placement under arbitrary electrode as the deformation
space. Based on our experience, the deformation space of
planar DEAs is selected as 0,2:5½ � mm: Then, the deforma-
tion space is divided into uniform M segments (M¼ 100 in
this work). For any electrode pattern /i i¼ 1,2, :::,nð Þ, the
max displacement di of the FEM results can be denoted as:

di ¼ max
i

f /ið Þ (1)

where f /ið Þ is the continuous deformation distribution under
the electrode pattern /i. Then, the probability density of the
dataset is defined as:

g
2j
M

� �
¼

nj
2 j� 1ð Þ

M � d< 2j
M

� �
n

(2)

where nj represents the number of dj that satisfies
2 j� 1ð Þ

M � d j< 2j
M , j¼ 1,2, :::,M

� �
in the dataset, n represents

the total number in the dataset.
Based on the above evaluation method, the dataset is con-

structed by the following four steps. The first step is to ran-
domly generate electrode patterns. We adopt a random
algorithm (randomly select 1250 units out of 2500 and set as
1) to generate 10,000 electrodes patterns (called small grid)
and calculate the continuous deformation through the FEM.
Based on the dataset with small grid electrode patterns, we
can obtain the probability density of the small grid-based
dataset (Fig. 2a). It can be seen that most of the data are con-
centrated on the small deformation area. Based on the data-
set, a neural network model is also trained, which is working
as the surrogate model for optimizing the design of planar
DEAs. However, for the designed planar DEA, its maximum
deformation predicted by the surrogate model is much
smaller than that of the FEM with same electrode pattern
(see Supplementary Fig. S5 for more details about the surro-
gate model based on the random electrode-based dataset). It
is worth noting that the prediction RMSE of fragmental elec-
trode patterns increases for the model trained without the
small grid-based dataset predicted. The main reason depends
on the fact that the small grid-based dataset is concentrated
on the small deformation area due to fragmental electrodes.
As a result, the trained surrogate model cannot predict large
deformation.

To reduce the fragmentation, the second step is to
enlarge the size of the unit (called large grid-based data-
set). We adopt another nine kinds of size to mesh the
dielectric elastomer membrane, including 2 · 2, 3 · 3,
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4 · 4, 5· 5, 6 · 6, 7 · 7, 8 · 8, 9 · 9, and 10· 10. For the
2 · 2 and 3 · 3, the sample size is small, so all of them are
added into the large grid-based dataset. For the rest seven
kinds of size, the sample size is very large. Therefore, we
randomly select about a thousand electrode patterns for
each mesh unit. Furthermore, we analyze the probability
density distribution of the large grid-based dataset (Fig.
2b). It demonstrates that by enlarging the size of the unit,
the output displacement is improved. However, on the one
hand, the maximum displacement in the dataset concen-
trates around 1 mm, which will lead to prejudice for train-
ing surrogate model. On the other hand, the large grid
causes nonsmooth edge of the electrode pattern.

To overcome the above drawback, the third step is to
adopt a Bezier curve method to generate continuous electro-
des. We choose two arbitrary points along the edge and

middle point as the through points, then two hyperpara-
meters are introduced to generate four control points of the
cubic Bezier curve. By randomly sampling the two arbitrary
points and two hyperparameters, we obtain 10,000 Bezier
curve-based electrode patterns. The probability density dis-
tribution of the Bezier curve-based dataset (Fig. 2c) demon-
strates that it can significantly expand the maximum
displacement distribution of the dataset. Based on the above
three steps, we obtain three datasets with three different
probability density distributions. Furthermore, we use them
to construct a bigger dataset and analyze its probability den-
sity distribution, shown in Figure 2e. It can be observed that
the displacement in the dataset can cover different displace-
ment levels, including small, middle, and large deformation.
However, as the distribution is still ununiform, the sample
size under different deformation is unbalanced and the

FIG. 2. Construction of the dataset. (a) Dataset based on the small grid electrode pattern. (b) Dataset based on the
large grid electrode pattern. (c) Dataset based on the Bezier curve electrode pattern. (d) Dataset is augmented by rota-
tion and mirroring. (e) The data distribution of augmented dataset.
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trained surrogate model will tend to be high probability area.
To further improve the generality of the dataset, the fourth
step is to augment the dataset. Due to the geometric symmetry
property of planar DEA, the displacement field of the electrode
after transformation (rotation or mirroring) is the same transfor-
mation of previous displacement field, paving a way to aug-
ment the data. As shown in Figure 2d and Supplementary Fig.
S3d, the process of data augmentation include the following
three steps: (1) evaluate the maximum displacement distribu-
tion of all the electrodes in the original dataset; (2) split the
electrodes by the uniform distribution curve; (3) for the elec-
trode with a large sample size (maximum displacement above
the uniform distribution), we calculate how many times it is
larger than the uniform distribution (e.g., n times) and then ran-
domly sample the electrodes with a ratio of 1

n; and (4) for the
electrode with a small sample size (maximum displacement
beneath the uniform distribution), we first augment the elec-
trode by eight times with rotation and mirroring,58 then repeat
steps (2) and (3) once.

Finally, we construct a dataset with physical information
that consists of 10k electrode patterns with a uniform max
displacement distribution (Fig. 2e, and details on the dataset
construct methods are shown in Supplementary Fig. S3.). To
further illustrate the contribution of these electrode genera-
tion methods and dataset construction approaches, we
trained the NN model on various datasets and compare the
predicted deformations with FEM results. As shown in Sup-
plementary Fig. S5, the RMSE of the trained model based on
the augmented dataset is better, shows the accuracy of the
NN model. Based on the above dataset construction strategy
and the augmented dataset, we next train a surrogate model
to rapidly predict the continuous deformation under any dis-
tributed electrodes.

Neural network-embedded physical information-based

surrogate model

With the physical prior knowledge of DEAs, we build a
specialized convolutional neural network to model the con-
tinuous deformation of the planar DEA under distributed
electric field.

Design of the neural network. To describe the relationship
between the distributed electric field and the continuous defor-
mation, we define it as a nonlinear mapping problem. The input
is distributed electric field S and the output is the displacement
field U. The nonlinear mapping can be expressed as:

fh Sð Þ¼U (3)

where h is the parameters of neural network f . To accurately
predict the displacement field from distributed electric filed,
we design a convolutional neural network with physical
information, which can (1) extract the special features from
distributed electrode patterns; (2) transform them into high-
dimensional feature space; (3) bridge the gap between spe-
cial spatial features and geometrical displacement features;
and (4) reconstruct the displacement field. Figure 3a shows
the framework of neural network that consists of encoder
module, nonlinear mapping, decoder module, and multiscale
supervision.

Encoder module is the feature extraction part, which is
used to extract spatial features from electrode pattern distribu-
tion. To sufficiently extract local and global information, we
utilize a five-layer sequential neural network. Considering
that DEA has mechanical and electrical continuity, and strong
interactions in adjacent electric nodes, we take large kernels
in the early layer to increase the receptive fields and extract
features, which can depict the spatial correlations, and fuse
local information to generate effective features. Each layer
can perform nonlinear transformation. Five-layer neural net-
work can effectively extract local and global features from
raw data and mapping them into high-dimensional embed-
ding space. The bottleneck layers are used to map extracted
spatial features to high-dimensional displacement feature
space for successive decoding and reconstruction process.

Decoder module is the reconstruction part, which is uti-
lized to decode the high-dimensional features into displace-
ment field. Here, we utilize three convolutional neural
network layers, which gradually enlarges the spatial resolu-
tion and reduces the feature dimension, and finally recon-
structs the displacement field. Considering the displacement
on X and Y directions are strongly coupled and implied in
the spatial features of electric pattern, we build two parallel
branches to reconstruct horizontal displacement simultane-
ously (Supplementary Fig. S4). Furthermore, to increase effi-
ciency and stability of the training process, we add an
assistive branch to help the neural network converge. The
branch takes 1/2X as a reconstruct target and can guide net-
work modeling process. Due to the symmetrical data, 1/2X
branch can act as a 1/2Y branch in some extend and only
design one 1/2 branch for network efficiency. In the whole
network, 1/2 branch is acting as coarse scale, which can
reconstruct global and coarse displacement, while full-scale
branch can further provide details and high-resolution dis-
placement field. With multiscale branch structure and corre-
sponding supervisions, the training process would be more
stable and converge fast, as well as higher performance.

Loss function of the neural network. The target of the pro-
posed network is estimating the accurate displacement under
distributed electric field. To introduce the physical mechanism
into our predicting model, we design the loss function to guide
the network leaning process and minimize the output error.
We first choose the L1 smooth loss to make the output dis-
placement fiddle close to the ground truth. L1 smooth loss can
provide stable loss sign for the network without big gradient
backpropagation. The maximum displacement output repre-
sents the motion capacity of DEAs, which is important to con-
strain the noise and outlier that may affect the training
process. Thus, we introduce the maximum displacement error
into loss function that is used to constrain the error and abnor-
mal points. Besides, a hyperparameter k is introduced to adjust
their contribution in training processes. We utilize backpropa-
gation to transfer the loss value to each layer and update the
parameters to minimize the prediction error between f Sð Þ and
U. The loss function can be expressed as follows:

Li U j f Sð Þ� �¼ ǁUi � f Sið Þǁ1 þ kmaxǁUi � f Sið Þǁ1 (4)

Based on the above loss function, the neural network is
trained to predict the continuous deformation field. We train
five prediction models based on the datasets in Figure 2,
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FIG. 3. Design and validation of the neural network. (a) Structure of the neural network, including the encoder mod-
ule, decoder module, and supervise module. (b) Predicted displacement field by neural network models trained on small
grid, large grid, Bezier, augmented dataset, and FEM result by ABAQUS of a half circle electrode pattern. RMSE is
calculated to denote the accuracy of these neural network models. (c) Comparison of predicted maximum displacement
of augmented dataset between models trained on small grid, large grid, Bezier, and augmented dataset. R2 is calculated
to represent the goodness of fit between predicted model and FEM. (d) Comparison of predicted normalized maximum
displacement of small grid, large grid, and augmented dataset by the model trained without small grid electrode pat-
terns. (e) Predicted normalized maximum displacement of small grid dataset by the model trained on augmented data-
set. FEM, finite element model; RMSE, root-mean square error.
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including small grid, large grid, Bezier, augmented, and with-
out small grid datasets. Figure 3b shows one example of the
finite element analysis of DEAs and the prediction result
based on models trained on five datasets. It can be seen that
with the augmented dataset, the surrogate model can precisely
predict the continuous deformation. Compared with the FEM
simulation results, the RMSE is <0.06, which is considered
an acceptable prediction error. Furthermore, we adopt three
electrode patterns to validate the effectiveness of those surro-
gate models (Fig. 3b and Supplementary Fig. S5). Based on
the simulation results, the maximum displacement of each
electrode pattern of the surrogate model is plotted as a func-
tion of that of the FEM. Linear coefficient of determination
R2 is calculated to represent the linearity of predicted models
and PV (peak to valley) of the error (FEM result minus pre-
dicted field) is calculated to present the bias of models. As
shown in Figure 3c, the small grid-based surrogate model
cannot accurately predict the relationship between continuous
deformations and distributed electrode patterns. By enlarging
the grid and introducing Bezier curve-based electrode pattern,
the accuracy of the surrogate model is improved, but there is
still obvious bias. By augmenting the dataset, the perform-
ance is significantly enhanced, verifying the effectiveness of
our dataset construction approach.

We then trained a model without small grid dataset and
test the predicted maximum displacement of each electrode
pattern of the dataset. The results in Figure 3d show that the
model trained without small grid dataset cannot predict the
deformation in small scale of deformation, while the model
trained by the augmented dataset could predict the deforma-
tion during all deformation space (Fig. 3e). We then predict
the displacement field of several electrode pattern on various
datasets (Supplementary Fig. S5). The model trained without
small grid dataset has twice as much error PV as the model
trained on augmented dataset when the maximum displace-
ment of input electrode pattern is at a small level. In addition,
for the neural network-based surrogate model, it only takes
0:011s to obtain the predicted results. Compared with FEM,
it can accelerate the simulation process by three orders, pav-
ing the way for rapidly designing the electrode patterns of
DEAs. In the following section, we adopt the augmented
dataset-based surrogate model to automatically design DEAs.

GA-based inverse design

Based on the surrogate model, many kinds of optimization
approaches can be used. Considering the serious nonlinearity
of DEAs and high-dimensional design space, we adopt a GA
to optimize the distributed electrodes of the planar DEAs in
this work.

To optimize the electrode pattern, we first need to define a
design object. Although the DEAs can generate continuous
deformations, we usually only care about the performance of
a few points. Without loss of generality, the design object is
defined as maximum displacement of specific points, which
can be expressed as:

argmaxD¼/ x,y,h,að Þ (5)

where x,y,h represent the coordinate and motion direction
of the target point. / is the excitation voltage. D is the dis-
placement of the target point, and a is the area fraction of

the electrodes. Furthermore, we define a loss function
(Lagrangian function) as:

Fi D j/ x,y,hð Þð Þ¼ 1� ǁDi
xcos hþDi

ysin hǁ1
ǁDiǁ2

þ kǁai � aǁ1

(6)

where ai is the area fraction of each electrode pattern, k is a
Lagrangian operator, and a is the target area fraction. Di

x and
Di

y are the components of the target point displacement along

the x and y direction. The
ǁDi

xcos hþDi
ysin hǁ1

ǁDiǁ2
represents the nor-

malized in desired direction.
With the loss function, we employ the GA to achieve the

inverse design of DEAs, as shown in Figure 4a. To this end,
we first mesh the dielectric elastomer membrane into 20 · 20
units and use “0” and “1” to present the unit without and with
electrode, respectively. Then, the electrode pattern is coded as
chromosomes. Lastly, the optimization process mainly
involves the following steps (Supplementary Fig. S6 and Sup-
plementary Movie S1): (1) 1000 random electrode patterns is
generated, which is working as the initial population; (2) the
continuous deformations of each initial population are pre-
dicted based on the surrogate model; (3) the value of the loss
function is calculated based on the displacement field and
sorted from smallest to largest; (4) the populations with small-
est 2% of loss functions are selected as the elitism and deliv-
ered directly into the next iteration; (5) the rest of the electrode
patterns are recombined by a two-point crossover method with
a probability of 0.7 and mutated by inversion mutation method
with a probability of 0.3; (6) the electrode patterns are filtered
to avoid the checkboard phenomenon; and (7) update the elec-
trode pattern for the next iteration until the algorithm is con-
vergent, and the best electrode pattern is selected as the
optimized result. The adjustment procedure of one electrode
pattern during the optimization process is shown in Figure 4b.
In the iterative optimization process for the single-point task,
the result can be obtained with only 60 iterations. Time of
each step in the iteration is only 1:9s, which is related to the
number of initial parameters set. Next, we take several experi-
ments to prove the effectiveness of the algorithm.

Case I: Maximum displacement of a single point

Based on the above GA-based inverse design method, we
first set the design object as maximum displacement of a single
point toward an arbitrary direction. And the experimental setup
is shown in Supplementary Fig. S7. Without loss of generality,
the selected points and directions are illustrated in Supplemen-
tary Table S2. For the convenience of comparison, we also need
eight intuitive designs (Fig. 5a). To construct the intuitive
designs, we adopted a same rule for all cases instead of selecting
specifical electrode pattern to deteriorate the output displace-
ment of the intuitive design. We separate the dielectric elasto-
mer membrane into two regions by a line that crosses the object
point and is perpendicular to its desired motion direction, then
the region behind the motion direction is selected as the elec-
trode pattern. According to the above eight design objects, we
separately employ the GA-based inverse design method by tak-
ing the coordinate and motion direction of the target point as an
input to automatically design the electrode pattern. Based on the
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designed electrode pattern, corresponding experiments are con-
ducted and evaluated. Figure 5 and Supplementary Movie S2
show the design results, which demonstrate that:

1. For arbitrary points and directions, our method always
can rapidly generate optimized electrode patterns (Fig.
5a), which will accelerate the application of DEAs in the
field of soft robotics.

2. Compared with the intuitive design (Fig. 5b and
Supplementary Fig. S8.), the performance of optimized
electrode pattern is improved by about 30%, validating
the effectiveness of our automatic design framework.

Case II: Maximum displacement under different area fraction

In the above analysis, we keep the area fraction of the elec-
trode pattern constant. Of course, the area fraction also influ-
ences the performance of the planar DEAs. Therefore,
changing area fraction is adopted to evaluate the expandability
of the automatic design framework. To this end, the design
object is selected as maximum displacement of the central
point under different area fraction, which can be described as:

argmaxD¼/ 100,100,0,að Þ (7)

Based on the above design object, the area fraction is
changing from 5% to 95% by a step of 5%. Then, our GA-

based inverse design method is adopted to optimize the elec-
trode pattern under different area fraction. Figure 5a shows
the optimization results. It can be observed that: as the area
fraction increases, the maximum displacement of the central
point increases first and then decreases. This phenomenon
matches with our experience: for the planar DEA, too large
or too small area fraction will hinder the deformation of the
dielectric elastomer membrane. In addition, it also demon-
strates that although our surrogate model is trained based on
a constant area fraction of electrode pattern, our design
framework can also self-adapt different area fraction.

Case III: Maximum displacement of multiple points

Except the single point, we further explore the application
for motion of multiple points. To this end, we select two
kinds of design objects. The first one is to design an elec-
trode pattern that simultaneously generates the centripetal
motion of four points. The second one is to simultaneously
generate the rotation motion of four points. Two design
objects can be expressed as:

argmaxDi ¼+
i
/ xi,yi,hið Þ (8)

Based on the above deign objects, we adopt the automatic
design framework to design the electrode patterns. Figure 6b
and Supplementary Fig. S9 show the simulation results and

FIG. 4. Schematics of inverse design with genetic algorithm embedded neural network. (a) The procedures of GA,
including the displacement field prediction and electrode pattern adjusting during one iteration. (b) The evolution of
electrode pattern and the corresponding predicted displacement field on the loss curve during iterations.
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experimental data. It can be seen that with the optimized elec-
trode pattern, the four points can generate centripetal motion
with 0.8 mm and the rotation motion by 2�, validating the
effectiveness of our automatic design framework for complex
design objects (Supplementary Movie S2).

Case IV: Multiple solutions

Due to the high-dimensional design space, multiple solu-
tions may widely exist for the same design object. By taking
advantage of the GA, it can easily generate multiple solutions.
As shown in Figure 6c, we employ our automatic design
framework to generate eight electrode patterns with basically
same maximum displacement of the central point (about 2.2
mm). Furthermore, when the displacement of the central point
is set as 1.0 mm, our automatic design framework also can
generate a series of electrode patterns (such as the eight elec-
trode patterns shown in Fig. 6d) with different shape and area
fraction. The capability of multiple solutions of our automatic
design framework may contribute to satisfying different appli-
cation conditions of DEAs.

Conclusions

In this work, we propose a deep learning-based design
framework for DEAs to automatically generate distributed
electrode patterns based on desired performances. To this end,
we first establish a membrane element through UMAT in
ABAQUS to generate dataset for training neural network and
propose a dataset construction approach to optimize the distri-
bution of the dataset. With the optimized dataset, a neural
network-embedded physical information is trained to accu-
rately and rapidly predict continuous deformation under arbi-
trary electrode patterns within 0:011s. Finally, by using the
neural network as a surrogate model, a GA is introduced to
automatically design the electrode pattern of DEAs. To vali-
date the automatic design framework, various design objects
(including maximum displacement, multiple object optimiza-
tion, multiple solutions, and complex actuations) are adopted.
Both simulation data and experimental results demonstrate that
our automatic design framework can rapidly design the elec-
trode pattern within 2 min with obviously improved perform-
ance. In addition, our design framework is capable of

FIG. 5. Designed DEAs of maximum displacement of a single point. (a) The comparison of optimized electrode pat-
terns and the intuitive one. (b) Experimental results of maximum displacement of target points.
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generating multiple solutions and beyond expectation electrode
patterns, which may contribute to broaden the applications
of DEAs. With the fast and automatic design framework,
we can improve the performance of DEAs for propelling
their applications in soft robots. In the future, we would
like to consider the viscoelasticity of the materials in the
FEM and extend the automatic optimization framework to
fit the design demands with dynamical response of DEAs.
Nevertheless, our framework contributes to rapidly and
automatically design DEAs with high performance and
high-dimensional design spaces, accelerating the practical
applications of DEAs.
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